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                                Abstract 
 

      In this paper, we develop a new tracking approach 
which is based on cooperation and coordination of 
multiple agents which are pan-tilt-zoom cameras to 
optimize the cost of tracking and communication while 
simultaneously focus on the details of the object of 
interest.  Each agent is able to track the object 
individually but the problem arises when the object goes 
suddenly out of the field of view of one agent because of 
an occlusion or an unexpected event. So each agent has to 
decide to take an action among a set of finite possible 
actions to overcome this situation in a way that optimizes 
the task of tracking.  
 
 Index Terms – Cooperative Tracking, Particle 
Filtering, Pan-Tilt-Zoom Tracker. 
 
 

1. Introduction 
        As the demand for reliable, fault-tolerant and fast 
systems has increased, many researchers have been 
attracted to Multi Agents Systems. Inherent parallelism 
which results in better performance as well as distribution 
of intelligent components and overall reliability and 
robustness has given more popularity to these kinds of 
systems in the research labs and industries.  
        The areas of application of these systems vary greatly 
but in general a solution need to be sought to coordinate 
the agents to optimize the costs of doing the assigned task 
or to share information among the agents for higher 
efficiency. A novel planning method is proposed by Li et 
al in [1] for multi-agent dynamic manipulation where a 
single agent is not capable of doing the task individually. 
A game theory approach has been presented for solving 
the coordination task. As an example of a multi agent 
system consisting agents with different capabilities, 
Grabowski et al proposes the design of a team of 
heterogeneous robots which can be coordinated to provide 
real-time surveillance and reconnaissance [2].  Each group 
of robots has its own type of sensor and the robot team 

exploits modular sensing, processing and mobility to 
achieve a wide range of tasks that include mapping and 
exploration. Burgard et al also consider the problem of 
exploring an unknown environment by a team of robots 
which provides a faster and more reliable approach rather 
than traditional approaches  [3].  
        One of the applications which has attracted many 
researchers in the field of multi-agent systems  is multi-
sensor tracking. This  means determining the position of 
one or multiple objects of interest and tracking their 
movements according to the data from multiple sensors . 
Kang et al presents an adaptive background generation 
and moving region detection in [4] for a single pan-tilt-
zoom camera. Jung et al has solved the problem of fixed 
cameras in [5] and has implemented a robust real-time 
algorithm for moving object detection for an outdoor 
robot carrying a single camera. The proposed methods for 
any single camera have a number of drawbacks such as 
not being robust against failure and occlusion and also 
poor depth estimation which are the major deficiencies of 
the above examples that use a single camera. These 
problems have been overcome by switching to multiple 
camera approaches. Collins et al present a  mean-shift 
tracker that adjusts the pan, tilt, zoom and focus 
parameters of multiple active cameras for tracking a 
person in the scene [6]. Their design emphasizes 
modularity and robustness of each individual camera, so 
they have to broadcast a large amount of data in a period 
of time (once per second) which can degrade the 
performance of the whole system. An automated 
surveillance system is proposed by Lim et al in [7]. They 
use multiple pan-tilt-zoom cameras to track people in the 
scene. First, a master camera finds the object of interest in 
its field of view and assigns a camera to track it by using a 
Kalman filter tracker. This approach also can suffer from 
the lack of robustness. If the master camera fails, the 
system will not work at all.   
        In this paper, we present a new tracking approach 
which is based on cooperation and coordination of 



multiple agents which are pan-tilt-zoom cameras to 
optimize the cost of tracking and communication while 
simultaneously focus on the details of the object of 
interest. Each camera is able to track the object 
individually which can result in a robust system against 
failure. The cooperative behavior of the cameras also 
results in the better performance of the system in case of 
loosing track of the object due to occlusion or limited field 
of view. Another feature of the proposed method is that it 
focuses on reducing the cost of communication and 
searching space.  
        The architecture of each agent consists of three main 
modules: Object Detection module, Tracking module and 
Coordination module. In the next section we present a fast 
and inexpensive method developed for object detection. 
Section III provides the description for 
CONDENSATION (Conditional Density Propagation) [8] 
algorithm for tracking which represents arbitrary multi-
modal densities and unlike [8] is not based on image plane 
coordinates . In section IV, the cooperative action selection 
according to multiple degrees of freedom of each camera 
and optimization strategies are discussed. Also we 
describe our extension to the probabilis tic tracker for 
improvement of the performance. After that, the 
experimental results are shown for single and multiple 
camera cases.  
 
2. Moving object detection 
 
        The first processing step which is done by each agent 
individually is searching and detecting the object of 
interest in the field of view at the current degree of pan 
and tilt. 
 
A. Image segmentation and finding connected 
regions  
 
        A fast, inexpensive and robust color-based method 
that is a modified version of [9] is implemented for the 
detection of the objects. The modification is made mainly 
on reducing the memory needed for processing and also 
removing the noise after the processing.  
        A data structure is defined for storing the information 
of the objects which are found in the image. This 
information includes coordinates of the bounding boxes 
around the objects (blobs), the size of the object which is 
the number of pixels that are surrounded by the 
rectangular region mentioned above, color and object 
number.  
 
B. Noise filtering 
 
        Before we pass the information from Object 
Detection module to the Tracking module we should 

eliminate the noise objects from the list of the detected 
objects. Two fast filtering methods are being adopted for 
performing this task. First we search in the object list and 
if the size (number of pixels in the blob) is less than an 
expected value, we remove that object from the list. The 
second filtering method is based on evaluating the height 
to width ratio (or width to height ratio). If this ratio is also 
less than a specified value, that object should be 
considered as a noise. Since the number of found objects 
is usually small, the search is done quickly. These filters 
are adjusted considering the physical specification of the 
environment such as shape and size of the objects  and 
frequent errors happened in the vision system due to 
camera noise and so on. After the processing is finished, 
we pass the information from this module that is the 
coordinates of the center of mass of the objects  and width 
of the objects to the tracking module for localization and 
prediction of the object state in a global coordinate frame.  
 
3.  Probabilistic tracking using a single pan-
tilt-zoom camera 
  
        A probabilistic approach has been applied for 
tracking the objects in the scene. We have developed our 
tracking algorithm for a single pan-tilt-zoom camera based 
on the Condensation algorithm. This algorithm which is 
based on the Bayes’ rule is not only computational 
efficient it has also shown better performance compare to 
similar trackers. For instance, unlike a Kalman filter, it is 
able to represent almost arbitrary distributions and no 
functional assumptions (linearity, Gaussianity, 
unimodality) are made and it is simpler compare to a 
Kalman filter due to the absence of computationally 
complex Riccati equations. A detailed comparison of the 
Condensation with Mean-Shift and Kalman Filter trackers 
can be found in [10].  
         A general assumption which is made here is that the 
environment is Markovian which means the current state 
of the object only depends on the previous state. The 
observations are also mutually independent and they are 
not related to the dynamic process. We can express these 
assumptions by the following equation where probability 
distribution of previous measurements and current state 
given the previous states is  shown: 
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where tx and tz are state and measurement in time t.  
        In our implementation, the state vector x defines a 
complement of spherical coordinates of the object, i.e. x = 

[ φφθθ && ]. If we project the line that connects the 
center of projection of the camera (at an initial degree of 
pan and tilt) and center of mass of the visible part of the 
object on the x-y plane of the reference coordinate frame 



(to be defined next and shown in Fig. 1), θ  is defined as 
the angle between that line and positive direction of the x 
axis. φ  is also defined as the angle between the projection 
of that line onto y-z plane and positive direction of the z 
axis. Let us define the coordinate frame C like what is 
shown in Fig. 1. The origin of this frame is located at the 
center of projection of the camera in an initial state and its 
z axis is perpendicular to the plane that the camera resides 
on and the y axis is perpendicular to the center of the 

image plane at an initial position of the camera. θ&  and φ&  
are representing the rate of change of those angles in each 
time step. Since objects with the same θ and φ  but 
different distances to the origin has the same projection in 
the image plane, for efficiency in computations we have 
eliminated the distance component from the spherical 
coordinates. Because we have different zoom values 
during the processing, we should map the image plane 
data to a world coordinate frame that is the complement of 
spherical coordinates in our solution. 
        At each time step the pan and tilt degree of the 
camera ( cθ  and cφ ) are known. To compute the 
complement of spherical coordinates of the object that is 
being tracked we should consider the deviation of the 
center of the visible part of the object from the center of 
the image plane at the current degree of pan and tilt  
considering the current zoom value (Fig. 1). So θ and φ , 

the angular components of object state are evaluated 
according to following equations: 
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where hα and vα are horizontal and vertical angle of view 

of the camera (without zooming), cxo  and cyo are the 

differences (in pixel) of the object center and x and y axis 
of the coordinate frame which is shown in the image plane 
in Fig. 1. Iw and Ih are width and height of the image 
plane in pixel and z is the zoom ratio at that time step. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. 1l and 2l are the projection of the optical 
axis of the camera in the current degree of pan and 
tilt (The solid red line) on the x-y and y-z plane 
respectively. cθ is the angle between 1l  and the x 

axis and cφ is the angle between 2l and the z axis. 
 
        Since the whole object is not visible in the zoom-in 
state, we do not have the real coordinate of the center of 
the object and we assume that there is not a large 
difference between the real center of the object and the 
center of the visible part of the object. 
        The whole emphasis of the above methods or the 
methods in the next section is to minimize the amount and 
complexity of the computation needed considering the fact 
that a good estimate is gained through the computations 
without a need for the intrinsic camera parameters. 
        The goal of the Condensation tracker is to find a 
density function for approximating the state of the object 
which means finding of the current state given the 
measurements from the beginning of the processing till 
now (i.e. ),...,( 1 tt zzxp where tx and tz are state and 

measurement in time t). Using the Bayes’ rule we have:  
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where k is a normalization factor which does not depend 
on tx  and simplification has been made using the fact that 
observations are independent.  
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                      (c) 
Figure 2. (a) The density distribution for the 
previous time step (b) particles’ distribution after 
applying the dynamic model (c)The red cross 
shows the real measurement.   
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        The one dimensional case is shown in Fig. 2 and the 
assumption is that the object moves on a path parallel to 
the equator of the sphere which is an approximation for 
the image planes in all degrees of pan and tilt. First, we 
choose a set of N samples randomly with a probability 
proportional to ),...,( 111 −− tt zzxp  which is known from 

the previous time step (Fig. 2a). Then we apply the 
stochastic dynamic model of the object movement to the 
set of samples to get a new set of samples (Fig. 2b). The 
density distribution at this step is proportional 
to ),...,( 11 −tt zzxp . After the measurement is done 

according to the data from the processing of the image, we 
re-weigh each particle according to a Gaussian whose 
mean is located on the measurement and the set of 
samples with their new distribution is propagated to the 
next step. Since we have a four dimensional state vector 
we need a four dimensional Gaussian and the dynamic 
model should be applied in two dimensions (The real 
measurement is shown in Fig.3). The particle with the 
median of the probabilities is considered as the estimated 
belief of the agent in each time step. 
        At the beginning or in the single camera case, we use 
a first order linear stochastic differential equation as the 
dynamic model due to mechanical limitation of the 
camera( stochasticAxx tt += −1 part ), but we change 
this model over time for a better cooperative tracking 
performance in the multiple camera case. In section IV we 
will discuss the cases in which the dynamic model 
changes.                                     
 

 

                  
Figure 3. Two particles (rectangular boxes) and the 
real state measurement are shown in the picture. 
Less difference between the measurement and the 
estimated state results in a higher chance for that 
state to be selected in the next time step. A two 
dimensional Gaussian is shown as the density 
function for two position components of the state 
vector.  

4. Cooperative action selection 
 

        The goal of the system is to track the objects of 
interest by relying on cooperation and information sharing 
and each agent tries to maximize the number of the 
cameras that track the object. At the beginning, the 
tracking is being done with a maximum focus on the 
object but the problem arises when the object of interest 
goes suddenly out of the field of view of the camera (it 
can be an occlusion or moving with a higher velocity than 
the speed of the camera ) and the camera misses the track 
of the object. So the camera should decide what to do in 
the next time step to maximize the performance of the 
system. 
        We have a set of agents { }nAAAA ,...,, 21=  which 
can choose an action from a finite set of possible actions. 
Currently, we have defined three actions for each agent: 
Tracking, Communication and Zoom-out. Each agent 
should select a joint action in a way to maximize the total 
utility of the system and minimize the cost function which 
is defined to be:  

         ∑ +=
i
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provided that the number of cameras that can see the 
object need to be maximized. 

icommc and 
izoomc are the 

costs of communication and zooming for agent i, 
respectively. At each time step we assign a weight to the 
following actions and based on the rules and the weighted 
actions each agent makes a decision. The rules for 
assigning a weight to each action are as follows:  
        Tracking: This action has the highest weight if the 
object of interest is visible and there is no request from the 
other agents for sharing information about the state of the 
object. In this case, a relative degree of pan and tilt is 
selected according to the agent’s belief about the state of 
the object and the appropriate pan-tilt command is sent to 
the camera. It should be noted that, the camera has the 
maximum focus when choosing this action. 
        Communication and Information Sharing: If agent 
i looses the track of the object which means it doesn’t 
have any measurement about the object in a single frame, 
it sends a request command to agent j, an agent that sees 
the object partially or completely and asks for information 

and agent j sends back its belief ( jb ) which is the angular 

components (θ and φ ) of the particle with the median of 
weights in the response to the request. Then agent i adjusts 
its belief ( ib ) according to the agent j’s. If this action is 

selected camera i   transforms the coordinates of the object 
from the reference coordinate frame whose origin is the 
center of projection of  the other camera in the initial state 
(like the coordinate frames in figures 1 and 3) to its own 
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reference frame. The procedure of this approximate 
transformation is described in Appendix A. 
         In this case we modify the Condensation algorithm 
by considering another dynamic model for the object. 
Since in this case the state of the object and the 
measurements has a large difference, we increase the 
effect of velocity components in the dynamic model. 
        Zooming out: The other strategy that an agent can 
take is to widen its field of view to cover a larger area for 
searching for the object. This process is considered as a 
costly process because of the zooming out and zoom in 
again imposes a lot of delay due to the mechanical 
movement of the lens and each agent prefers to minimize 
usage of this action. But in the cases that all of the agents 
have no idea about the state of the object this action has 
the highest weight. So two agents are selected amo ng n 
agents and we assign a unique weight to this action for 
both of the cameras. The weight which is assigned to this 
action is proportional to the difference between ib and jb , 

the believes of agent i and agent j from the view of an 
agent: 

                             ∝w ji bb −                               (5) 

The idea is that if there is a large difference between the 
believes of the two agents, the chance of finding the object 
would be higher if both of the cameras zooms out. The 
other option is that only one camera zooms out and the 
other agents wait for the result of the camera which has 
zoomed out and get the data through communication. The 
weight of this action is selected according to the following 
equation (the weights are summed to one). 
 

                kw −= 1 ji bb −                        (6) 

where k  is a normalization constant.  
 
5. Experimental results 

 
        We have used Sony EVI-D100 Pan-Tilt-Zoom 
cameras for conducting the experiments. These cameras 
can pan 200 degrees with the maximum speed of 300 
degrees per second and tilt 50 degrees with the maximum 
speed of 125 degrees per second. The horizontal angle of 
view of these cameras in normal zoom is 65 and it varies 
to 6.6 degrees in the maximum zoom state. First, we used 
a single camera for tracking a small remote controlled car 
which moves randomly on a table. In this case, the camera  
that is placed on the table, estimates the position of the car 
by using the Condensation algorithm and adjusts its pan 
and tilt degree according to the state of the tracker and 
when it fails to track the car it zooms out to search a larger 
area for the car and when it finds the car it zooms in again. 
We have defined the failure as the invisibility of the object 
in a single frame for a camera. The result has been 
gathered from 20 trails of one minute of tracking and the 

percentage of the failure is 53.2%. The failures are mainly 
due to the movement of the car in the invisible areas 
(behind the camera , for instance). 
 

 
(a) 

 

                              
                                             (b)                                  
 
Figure 4. (a) The red box shows the belief of the 
camera that sees the car. (b) Camera 2 adjusts its 
belief according to Camera 1’s belief.  
 
         Next, we assigned two pan-tilt -zoom cameras to track 
the car cooperatively (Fig. 4) by following the algorithm 
and weighting scheme which is presented in section IV. 
The results which are shown in table 1 are gained from 20 
trails of one minute of cooperative tracking. It should be 
noted that the car moves with the speed of two meters per 
second. 
        The first column shows the average percentage of 
failures of each camera during the tracking, the second 
column represents the average percentage of times when 
the camera takes the communication strategy and the third 
column is the representative of the average percentage of 
number of taking the zoom-out action.  
 

TABLE I 
Result of the cooperative tracking 

 
Camera 

No. 

 
Fail  
(%) 

 
Communication 

 (%) 

 
Zoom-out 

(%) 
 

Camera 1 
 

32.6 
 

38.3 
 

13.6 

 
Camera 2 

 
33.4 

 
38.6 

 
9.5 

 
        As the results show, the number of failures has been 
decreased greatly compare to a single camera tracker and 

C1 
C2 



the performance and robustness has been improved with 
the algorithm presented for cooperative tracking.  
 
6. Conclusion and future works 
 
        A cooperative multiple pan-tilt-zoom camera system 
was introduced to track objects of interest in the 
environment. First, a fast and robust color-based object 
detector was implemented to detect the objects of interest 
in the field of view of the camera. Then, the result of the 
object detector is  passed to the Condensation tracker 
module which is able  to model non-linear and non-
Gaussian motions where the state of the tracker consists of 
angular components of the spherical coordinates of the 
object. Then we defined a finite set of actions for each 
camera, consisting tracking, communication and zooming-
out and the agents decide at each time step based on the 
weight of each action.  
        We tested the algorithm for a single and multiple 
pan-tilt-zoom cameras and we showed that the cooperative 
tracker has a better performance and robustness compare 
to a single camera tracker. 
        We are planning to implement an adaptive 
background modelling technique to detect any moving 
object in the scene. For example we can use this system 
for tracking athletes in the sports fields while zooming on 
them. The other thing that we plan to do is to share the 
information between the agents and assign a level of 
reliability to each agent to have a better estimation of the 
depth of the object. Also a planning algorithm should be 
considered for optimizing the task of tracking in the cases 
when the number of objects of interest exceeds the 
number of cameras.     
 
Appendix A: Coordinate transformations 
between two cameras 
 
        First, the Cartesian coordinates of the center of the 
object (

jj yx , and jz ) in the coordinate frame attached to 

the camera j are found (the assumption here is that the 
object is only visible to camera j). For computing the 
Cartesian world coordinate system, we need the distance 
of the object from the camera. This distance is currently 
approximated by the use of width of the object. Then we 
do the transformation to find the coordinates of the center 
of the object relative to the other coordinate frame which 
is attached to the other camera. If [ ]Tzyxji dddd = be 

the vector from the origin of camera j to the origin of 
camera i, the new coordinates, T

iii zyx ][ , are 

computed by using the following equation:         
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         If camera j has been also rotated relative to the 
coordinate frame of camera i, we should apply the rotation 
matrix to the above equation. In the next step, we compute 
the spherical coordinates from the new Cartesian 
coordinates because the measurement and the state vector 
of the Condensation tracker is based on the spherical 
coordinates. Then camera i  adjusts its belief according to 
these new coordinates in the next time step. 
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