An Overview of a Probabilistic Tracker for Multiple
Cooperative Tracking Agents

Roozbeh Mottaghi and Shahram Payandeh
School of Engineering Science
Faculty of Applied Sciences
Simon Fraser University
Burnaby, BC, Canada V5A 1S6
Email: {rmottagh, shahrag@cs.sfu.ca

Abstract— An overview of a probabilistic cooperative tracking adaptive background generation and moving region detection
approach is presented in this paper. First, a new tutorial- for a single pan-tilt-zoom camera in [5]. Jung et al have solved
like detailed explanation of the Condensation algorithm [1] is the problem of fixed cameras and have implemented a robust

described. Then we apply the probabilistic tracker to track I-ti 1qorithm f . biect detection f td
an object (easily extendable to multiple objects) according to real-ime aigorithm tor moving object aetection for an outdoor

multiple degrees of freedom of the cameras that are able to fobot carrying a single camera [6]. The proposed methods for
pan, tilt and zoom. To increase the robustness of the tracking any single camera have a number of drawbacks such as not

system we extend the one camera tracking method to multiple peing robust against failure and occlusion and also poor depth
camera case and each camera is considered as an agent that caRygtimation which are the major deficiencies of above examples

communicate with a central unit or it can act based on its own that inal Th bl h b
decision. Each camera will gain a level of reliability during the al use a single camera. 1hese problems have been overcome

tracking that is used in probabilistic tracking method to improve Dy switching to multiple camera approaches. [7] presents a
the performance. mean-shift tracker that adjusts the pan, tilt, zoom and focus

parameters of multiple active cameras for tracking a person in
the scene. Their design emphasizes modularity and robustness
As the demand for reliable, fault-tolerant and fast systena$ each individual camera, so they have to broadcast a large
has increased, many researchers have been attracted to Mmitount of data in a period of time (once per second) which can
Agents Systems. Inherent parallelism which results in bettgegrade the performance of the whole system. An automated
performance as well as distribution of intelligent componensairveillance system is proposed in [8] where multiple pan-tilt-
and overall reliability and robustness has given more populawom cameras are used to track people in the scene. First,
ity to these kinds of systems in the research labs and industri@smaster camera finds the object of interest in its field of
The areas of application of these systems vary greatly butiew and assigns a camera to track it by using a Kalman
general a solution needs to be sought to coordinate the agdittisr tracker. This approach also can suffer from the lack of
to optimize the costs of doing the assigned task or to shambustness. If the master camera fails, the system will not work
information among the agents for higher efficiency. In [2] at all.
novel planning method is proposed for multi-agent dynamic In this paper, we will present a probabilistic tracking ap-
manipulation where a single agent is not capable of doing theoach for multiple pan-tilt-zoom cameras to track the objects
task individually. A game theory approach has been presentd#dnterest in their field of view. The idea is that each camera
for solving the coordination task. As an example of a mulshould track the object while it has maximum focus on the
agent system consisting agents with different capabilitiedetails of the object. The agents (the cameras) cooperate with
Grabowski et al [3] propose the design of a team of heterogeach other during the tracking and share the object information
neous robots which can be coordinated to provide real-timénich is position, velocity, etc. to maximize the robustness
surveillance and reconnaissance. Each group of robots lbédracking. For a real time tracking, we do not extract any
its own type of sensor and the robot team exploits modulaxformation about the shape of the object and the cameras are
sensing, processing and mobility to achieve a wide range raft calibrated and we do not have a good estimation of the
tasks that include mapping and exploration. Burgard et @épth of the object. Therefore, there is a possibility that we get
also have considered the problem of exploring an unknowompletely different data from the cameras about the position
environment by a team of robots which provides a faster anfithe object but each agent has a level of reliability. This level
more reliable approach rather than traditional approaches [d].reliability is used in the probabilistic tracker to improve its
One of the applications which has attracted many researchersustness compare to previous approaches for decentralized
in the field of multi-agent systems is multi-sensor trackinglata fusion such as the work by Makarenko et al [9].
This means determining the position of one or multiple objectsIn the next section, tracking by using a single pan-tilt-zoom
of interest and tracking their movements according to ttoamera is described. A simple explanation of the Condensation
data from multiple sensors. Kang et al have presented algorithm is also presented in detail in that section. Section
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corresponding sample. For example the probability that the

p=0~71‘\ xf P00 thick cross in Fig. 1 (consider the object as a point) be at the
X p=0.83 position of the dotted cross is 0.56. It should be noted that
P=0.65 9y the value of the components of the samples change during the
=042 4 X X p=0.40 time but the number of the samples is constant and determined

by us. As the environment changes, we choose new samples
and assign new probabilities to them by using the dynamic
model of movement of the object and an observation made
by a sensor. Usually the dynamic model of the object that we
want to track is not known and we guess a model for that. It is
also possible to learn the dynamic model from the previously
Fig. 1. The object of interest is the quadratic object and each cross ikgow data from the movement of the object.
sample to which a probability is assigned. The thick cross is an arbitraryI thi th b fi is th It of .
point of the object (we consider the object as a point). The probability that n _'S case, € observauon 'S_ e resuit o _processmg
the thick cross is at the position of the dotted cross is 0.56. of the image from a camera and finding the position of the
object in the image buffer. The details of choosing samples
_ _ o and assigning the probabilities and finding the probability
lll, provides the details of communication of the agentsistributions and the theory behind the algorithm are described
and applying the level of reliability of each agent in thén the next subsection and in the subsection C, we will show
probabilistic tracker and the section after that is devoted k@w to apply this algorithm in the tracking by a pan-tilt-zoom

conclusion and future works. camera.
Il. BACKGROUND B. Formal Theory
A. Informal Theory The general idea of the Condensation algorithm is to find

The Condensation algorithm was first introduced for visu&i Probability distribution which means a probability function
tracking of curved objects in a cluttered environment [1]. IfPr €ach sample of the state vector of the object according to
this overview, we explain tracking of every kind of object§he real measurements (observation) from a sensor. The state
by defining point representation of the objects. By using th¥§ctor at timet which is denoted by, in this overview is a
algorithm we can track position and or velocity, etc. of aMector of variables that we want to estimate. Depending on the
object. The parameter or a combination of the parameters tARPlication, it can be position, velocity etc. or a combination of
we want to track form thetate vector of the object. The goal thém. The measurement from the sensor (in the case of visual
of this algorithm is to estimate the current state vector of tHEACKing, the camera) at timeis denoted byz;. So far we
object of interest. As it was said, the components of the stdtgve three terminologies: state, sample and measurement. State
vector can be position, velocity, etc. or a combination of theMCtor consists of the variables that we want to estimate and we
and the goal of the algorithm is to estimate these parametdffer (0 state as the space in which those variables (position,
The hypothesis of this algorithm is to choose some randd(ﬁ'oc'ty' etc.) can che_mge. Sample vectors are specific vectqrs
vectors from the domain of the state vectors and assign théhihe state space which have been chosen randomly according
a probability. These random vectors are calteples For 10 @ probability distribution. On the other hand measurement
instance if we want to track the position of a point whict$ @ vector of the form of the state vector and its value is
moves on a line that has length of 10 units and is located on {§ value which has been read from the sensors. Since the
interval [0,10] on thex axis of a coordinate frame, the domairP€NSOr iS noisy or has a limited range we can not rely on the
of the tracking is that interval and the sampleg)(are selected S€nsor data (measurement) and we find a probability for the
randomly from that interval. For example the samples can Bénilarity of the guessed samples with the real status of the
vectors [1.3], [1.8], [5.0], [6.7], [9.5] which are 5 samples tha@bject. For instance, for tracking an object in an image, we
have been chosen randomly. Then we assign a probabilityc@ definer; = [ Ty ] wherez andy are the coordinates
each sample. These probabilities are the probability of acti®dl the object in the image plane. We find a probability
position of the object to be the same as the randomly selecfgiribution for the state space according to the measurement,
samples. So we assign a scalar probability to each sample &h|1, 22, .-, z:), that is the probability that the state at time
these scalars form a distribution of the probabilities over tidS equal tar; provided that the measurements from time 1 to
state space. The details of defining this probability distributidine ¢ are equal ta,2,,...z; respectively. Using Bayes'’ rule,

are mentioned in the next subsections. (p(A|B) = p(B|A)p(A)/p(B), p(A|B) = p(AN B)/p(B)),
In Fig. 1 the estimation of position of an object in the(z¢|21, 22, ..., z¢) is computed as follows:

image plane is sh.own. The quadrangle is the object of interest _op(@elzr, e 2z 1)p(2e| e, 21,y 2021)

and each cross is a sample and the result of condensatifit!<1: - zt-1,2t) = p(zel21s s 21)

tracker is a probability which is assigned to each sample. (1)

This probability is the probability of the presence of on&ince the measurement at time is independent of
specific point of the object of interest in the position of théhe previous measurements, according to the above rules



p(zt|Te, 21, ooy 2e—1) = Dp(2¢|xe). AlSO p(z¢)21, ..., 2e—1) IS @

p(xt—l‘zl"'wztfl)
constant. Therefore: /\/\/\
p(x|z1, ey 2¢) = kp(ze|ze)p(2t|21, 00y 20—1) (2)

We can comput@(x¢|z1, ..., z:—1) by applying the dynamic
model of the object motion t@(x;_1|z1, ..., 2.—1) Which is T
known from the previous time step. The dynamic is a known safiiple ]
motion model of the object and it can be estimated before @)

the start of tracking and it relates the state vector at current
—es0—o—o—P

X

samplt #N

time step to that of previous time step and it depends on the il
intrinsic of the object and the environment in which the object Pl
moves. The dynamic model can be defined as:

xy = f(xy—1) + stochastic part 3)
where the stochastic part is a vector of independent standard - i
normal variables / (0, 1)) which are scaled by a factor that ®)
is determined according to the noisg¢. also can be any
function which is determined by the designer and relates the P
current state of the samples to the previous state. Because the M
movement of the object is random we add a stochastic part to
the dynamic model to add randomness to the deterministic
model. We describe the simple one dimensional case of >

tracking a point on a line where the state and measurement
vectors consist of only the position of the object. As shown
in Fig. 2a, we draw N samples randomly according to the

probability distribution from the previous time step. As yOuig. 2. (a) N samples are chosen randomly according to the probability
see the samples are denser in high probability areas becaligébution from the previous time step. The samples are denser near high

; i ; ; bability areas. (b) This figure shows the set of samples after applying the
there is more probability that a sample is chosen in that ar(g%erministic part of the dynamic model. Since the equatiary is- z¢—1 +

Then we apply the deterministic part of the dynamic modg[ each sample is drifted by the size af The white dots are the samples
to the set of samples. It should be noted that these schematiish are initially drawn and the black dots are those samples after applying

is for one dimensional state vectors. We need higher dimensfb?l deterministic part of the dynamic model. () The result of applying the
. . . : stochastic part of the dynamic model to the previous set of samples is shown.
functions as the dimension of the state vector increases.

Assume that the deterministic equation of motion of the
object isz; = x;_1 + a wherea is a constant. Figure 2b o,z
shows the samples after applying the deterministic part of the
dynamic model. Figure 2c shows the result of applying of the
whole dynamic model (deterministic +stochastic parts) to find
p<$t|zla ) Zt—l)'

So far, we have foung(x¢|z1, ..., 2:—1 ) which is needed for
computingp(z¢|z1, ..., 2:). As mentioned before we have a set
of samples from the space of the state vectors. These samplgss. Reweighing of the samples are shown. The new weight of sample
were primarily drawn randomly according to the previous time in proportion to the observation densityis.
step probability distribution. Then we applied the dynamic
model to that set of samples to get a new set of samples.

This new set of samples is the original one which has driftedhich is known as observation density is to be a Gaussian
by applying the dynamic model. After this step we make diinction G(u, o) where i is the mean of the Gaussian and
observation by using the sensor and we adjust the weidgditlocated on the real measurement from the sensoroaisd
(probability) of each sample according to this new observatioits deviation. This distribution shows that the probability that
The details of the reweighing the samples are discussed in the measurement be at the exact real position of the object
next paragraphs. We use Factored Sampling method [1] to fin@is the highest value. Fig. 3 shows the reweighing of each
the new weight of each sample. This method is describedgample according to the Gaussian function. It should be noted
appendix A. In this algorithmp(z¢|21, ..., z:_1) andp(z|z;) again that we have shown the observation density for a one-
have the same role a& (x) and f»(x) which are explained dimensional case. A higher degree function needed for higher
in the appendix, respectively. So N — oo the distribution dimensional state spaces.

of samples fromp(z;|x:)p(x¢|21, ..., 2¢—1) tends to be that This set of samples with their new probabilities forms the
of p(x¢|21, ..., 2t—1, 2¢). A reasonable assumption fpfz;|z;) distribution that we were looking for i.@x¢|z1, ..., 21, 2¢)

Measurement



In the next time steg + 1, we usep(x¢|z1,...,2¢t—1, 2¢) as

the previous time distribution and we draw N new samples

according to this distribution and we repeat the whole pro-

cedure. In the case of clutter where we have more than one
measurement (in the case of this one dimensional example,
if we have more than one point on the line and we want to

track one of them), we reweigh each sample according to the
nearest measurement.

Since there is more than one sample in the process (in
this case N samples), we need to pick one of them as the
representative of the real position of the point at the current
time step. There are different methods for performing this task.
Choosing the sample with the highest weight (probability) or
a sample whose weight is the median of the weights of the
samples are two ways of selecting the representative sample.

2] a focused section of
the image plane

C. Tracking Mechanism for a Single Pan-Tilt-Zoom Camera <

Now we describe tracking an object with an uncalibrated X
camera which has the capability to pan and tilt to track the
object while it can focus on the object with variable degrees Bly. 4. (a) The setup for tracking a moving toy car on a table is shown. It
zoom. We define the state vector as the spherical coordinatesssumed that the image plane at all degrees of pan and tilt of the camera
of one specific point on the object of the interest. This poif*ﬁa sp_here which is shown in the schematic. Each sample has a projection

. L . on the image plane and we assume a depth for the samples. For example the

can be the center of mass of the object which is approxmate;ﬁ/ samples; has the depth of;. (b) A focused section of the image plane
determined by simple processing of the projected image of tle@hown.l; andi- are the projection of the optical axis of the camera in the
object onto the 2D image plane. So the state vector is defirfégent degree of pan and tilt (The solid red line) on ihg andy-z plane

. : . . respectively.d. is the angle betweeh and thex axis and¢. is the angle
as.zy = [ 0 6 ¢ ¢ r 7 ] where .an.d ¢ are angmar betweenl> and thez axis. O is the projection of one point of the object on
components ana is the distance factod, ¢ ands are the the image plane.
rate of change of these parameters respectively. The reason
that we use spherical coordinates is that since the camera is
uncalibrated and we know the angle of pan and tilt of thiae angular deviation of the object of interest from the center
camera from its control section, it is more convenient amaf image are evaluated using simple pinhole camera model.
accurate to use this coordinate system rather than Cartessart and¢ are defined a8 = 6. — 6; and¢ = ¢. — ¢;. Now
coordinate system. we should find the depth of the object (thgparameter in the

Let us define the coordinate frame C in which we define thmeasurement vector). By using the priori knowledge about the
coordinate of the samples like what is shown in Fig. 4. Thdimension of the object and the width and height of the object
origin of this frame is located at the center of projection of thia the image plane, we can have an estimation that how far
camera at an initial state and isaxis is perpendicular to the the object is from the center of projection of the camera. To
plane that the camera resides on andythais is perpendicular compute the velocity components in the measurement vector
to the center of the image plane at an initial position of thet the current time step, we calculate the difference between
camera. We choose N samples according to the probabilibe value of the other components of the measurement vector
distribution from the last time step(x;_1]|z1, ..., 2:—1). Then in the current and the last time step. After the measurement is
we apply the dynamic model which we have assumed to belane we reweigh each sample proportional to the observation
linear first order equation to get a new set of samples. Aftdensity p(z:|x;:) which is assumed to be a six dimensional
that we reweigh each sample according to the observation fr@aussian whose mean is located on the nearest measurement to
the camera. each sample by following the procedure which was described

Having applied the dynamic model, we measure the rdalthe last subsection. Now we should pick one of the samples
position of the object by using the camera. The measuremast the representative sample so that the agent changes its
vector at time t has the form, = [ ¢ 6 ¢ & r 7 | direction toward that sample. The sample that has the median
So we need to map the image plane data to the real spherwfathe weights of the samples is chosen as the estimated
coordinates. position of the object. Since the camera has a position control,

At each time step the pan and tilt degree of the cam@ra ve send to the camera the difference between the current
and ¢.) are known from the control hardware. To computdirection of the camera and the direction of the chosen sample.
the spherical coordinates of the center of visible part of thdso the camera adjusts its focus according to the estimated
object that is being tracked we should consider the deviatidistance of the object. Then we propagate the new probability
of that point from the current degree of pan and #it and distribution over the state space to next time step to continue
¢.) considering the current zoom value (Fig. 48).and ¢;, tracking.

®)



I1l. MULTIPLE CAMERA TRACKING

In this section, we describe the tracking algorithm using
multiple pan-tilt-zoom cameras. Since there is a possibility of
failure or occlusion of one camera, we increase the robustness
of the system by increasing the number of cameras that
track the object. Also different views of an object help us in ]
reconstructing of its 3D structure. So we try to maximize the Measurement of agent;j  Measurement of agent
number of the cameras that track one object at each time step.

It should be noted that each agent has as maximum zobi$ 5 Reweighing of each sample according to different agent's observation
density is shownp; (z¢|z¢) andp; (z¢|z¢) are observation densities of agént

as possible on the object _during the traCking-_Th_e amoully ageng respectivelyL R! > LR} so thep;(z|z:) has a larger deviation.
of zoom depends on the dimensions of the projection of the

seen object on the image plane. But extracting the object
information (size, center of mass, etc.) in a zoomed view of g}, choose N samples proportional to the probability distribu-
object is somehow unreliable and this unreliability is cause[fé)n from the previous time step i.e(x;_1]|21, ..., z:—1). After
by_this fact that th_ere is a possibi!ity that the obje_ct_ _is nQ.Jt'pplying the dynamic model which is assumed to be a linear
visible completely in the zoomed view. The non-visibility ofyq; “order differential equation because of the mechanical
parts of the object adds more noise in approximating the rgaliiaiion of the camera, we need to reweigh each sample
position of the object. In this section we describe how Wg..rging to the observation densities. At this step, each agent
deal with this unreliability to increase the robustness of g, smits its level of reliability and the measurement vector
probabilistic tr_acker. . , . which are the result of processing of the image plane data)
In the following subsections we explain the actions that €ay) yhe central unit. We assume that the observation density
agent can take during the tracking. for each agent is a Gaussian that changes over time. The
A. Cooperative Action Selection central unit transforms the coordinates of the measurement
yegtor to a reference world coordinate frame and uses the
new measurement vector to fipd(the mean) of the Gaussian

1) Zoom-out: This action is taken by an agent when all 0Fmd uses level of reliability to determine the deviatian (

the agents have no idea about the position of the object. BK/ that. The deviation of the Gaussian for agenat time

/ . ) : X
taking this action each agent widens its field of view to cov%a's proportional to inverse of th&.R; which means that

more space and increase the probability of finding the obje € op;ervation density' frlom an agent with higher Ie\{el qf
2) Communication: The other action that an agent Cargehablhty has less deviation and peak of the Gaussian is

take is the communication action. This action is taken whélja/Per- Like what is mentioned in the background section we

at least one of the agents has an observation of the Objégyyeigh each sample according to these observation densities

An architecture like the Blackboard architecture in [10] had"d each sample is reweighed by the distribution whose mean
the nearest to that sample. Fig. 5 shows the reweighing

been implemented for the coordination of the agents wheR e : : .
ggthe samples considering thatk; > LR;. A simple one

2l /

Each agent can take three actions during the tracking. Th
actions are: Zoom-out, Communication and Tracking.

a central unit applies the Condensation algorithm and uses X : . LIt
the agents’ observation densities for finding a new probabili mensional case is Sh(_)W” in the following f'gt,”e'_

distribution over the state space. The assumption is that the‘t€r the central unit completed the reweighing of the
relative position of the cameras is known initially or will beSamples, it broadcasts the sample with the median (?f weight
determined through communication. Each agent has its o@hthe samples to all of the agents as the current belief of the
observation density which depends on tbeel of reliabilty system_ for object position. The new pro_bab|I|ty d|str_|b_ut|on is
of the agent. We denote this quantity ByR! which is the normalized and propagated to the next time step as it is needed

level of reliability of agenti at time ¢. As mentioned before, T fracking in.the next time steps. _ _
each agent has kevel of reliabilty This level of reliability ~ 3) Tracking: After applying the Condensation algorithm,

determines how much the central unit can rely on the dataBf central unit estimates the position of the object and
an agent. An agent has the highest level of reliability if it Caﬁroadcasts this estimate to all of '.the agents. Each agent adjusts
observe the object completely. The other agents that see fiedegree of pan and tilt according to the new estimate. The
object partially have a lower level of reliability. If two agentsZ00M value of each agent is determined according to the

see an object partially, the agent that has less zoom value Rglimated distance of the object from the center of projection

higher level of reliability which means the data from a lesSf the camera.

focused camera is more reliable. We describe the algorithm for

cooperative tracking of two agents but it is easily extendable

to multiple agents. An overview of a probabilistic tracker (the Condensation
We assume a single general probability distribution oveatgorithm) which is able to model non-linear and non-Gaussian

the state space (space of tracking) for all of the agents. Astions was presented. Then we applied the tracking algo-

mentioned in the explanation of the Condensation algorithrithm to track an object according to multiple degrees of

IV. CONCLUSION



Fig.

f1(x)

samples §;to Sy

7. Sampling fromfi(z). A set of N samples are drawn randomly

with a probability proportional tgf1 (x). So we see more samples under high

probability areas.

Fig. 6. The experimental setup with two cameras is shown in the picture.
The crosses are the measured position of the object by the cameras.

freedom of one pan-tilt-zoom camera and the idea was to track
an object with maximum possible zoom on it. After that, for
increasing the robustness of tracking we added more pan-tilt-
zoom camera agents to track the object. We defined a level of
reliability for each agent and used that value for reweighing
of the samples and finding a new probability distribution
over state space. The major disadvantage of the mentioned
algorithm is that we can never know the exact position of the
object which may cause some imperfections in tracking. Also
a better dynamic model can result in a better tracking result.

The computational requirements of this method of tracking
are somehow high so the tracking is done in near real time.
The performance can be improved by some methods such as
[11] in which they have improved the efficiency by the use of
adaptive size of sample sets.

fr(%)

()

itself without communicating with the central unit in the case
of failure of the central unit, etc. This tracking system has
many applications such as surveillance systems in buildings
and parkings, tracking athletes in the sport fields while we
can get a zoomed view of them. [1]

APPENDIXA: FACTORED SAMPLING METHOD 2l
Suppose we have a probability distribution that is the result

of multiplication of two other distributions. The factored
sampling method is used to find an approximation to thes
probability density function by using samples from those two
distributions. n

Assumef(z) = fa(x) f1(z), wheref; (z) and f2(x) are two
probability distributions. A set of samples= {sq, s2, ..., sy }
is drawn randomly fromf; (z) (Fig. 7).

Then we find the probability assigned to each sample i
proportion to f>(z). The probabilityr; of the jt* sample in
proportion to distribution offs(x) is computed as follows:

f2(s5)

Ejlv f2(s)) , 7

So we have found a new sample set, where the distribution
of the probabilities of the new samples tends to thaf(af), as -
N — co. Therefore, the distribution of the probability of these
new samples is an approximation to the distributjtin).

j

[6]
(4)

J

g eeey

the above equatiorr;s are the new weights.
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