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Abstract— An overview of a probabilistic cooperative tracking
approach is presented in this paper. First, a new tutorial-
like detailed explanation of the Condensation algorithm [1] is
described. Then we apply the probabilistic tracker to track
an object (easily extendable to multiple objects) according to
multiple degrees of freedom of the cameras that are able to
pan, tilt and zoom. To increase the robustness of the tracking
system we extend the one camera tracking method to multiple
camera case and each camera is considered as an agent that can
communicate with a central unit or it can act based on its own
decision. Each camera will gain a level of reliability during the
tracking that is used in probabilistic tracking method to improve
the performance.

I. I NTRODUCTION

As the demand for reliable, fault-tolerant and fast systems
has increased, many researchers have been attracted to Multi
Agents Systems. Inherent parallelism which results in better
performance as well as distribution of intelligent components
and overall reliability and robustness has given more popular-
ity to these kinds of systems in the research labs and industries.

The areas of application of these systems vary greatly but in
general a solution needs to be sought to coordinate the agents
to optimize the costs of doing the assigned task or to share
information among the agents for higher efficiency. In [2] a
novel planning method is proposed for multi-agent dynamic
manipulation where a single agent is not capable of doing the
task individually. A game theory approach has been presented
for solving the coordination task. As an example of a multi
agent system consisting agents with different capabilities,
Grabowski et al [3] propose the design of a team of heteroge-
neous robots which can be coordinated to provide real-time
surveillance and reconnaissance. Each group of robots has
its own type of sensor and the robot team exploits modular
sensing, processing and mobility to achieve a wide range of
tasks that include mapping and exploration. Burgard et al
also have considered the problem of exploring an unknown
environment by a team of robots which provides a faster and
more reliable approach rather than traditional approaches [4].
One of the applications which has attracted many researchers
in the field of multi-agent systems is multi-sensor tracking.
This means determining the position of one or multiple objects
of interest and tracking their movements according to the
data from multiple sensors. Kang et al have presented an

adaptive background generation and moving region detection
for a single pan-tilt-zoom camera in [5]. Jung et al have solved
the problem of fixed cameras and have implemented a robust
real-time algorithm for moving object detection for an outdoor
robot carrying a single camera [6]. The proposed methods for
any single camera have a number of drawbacks such as not
being robust against failure and occlusion and also poor depth
estimation which are the major deficiencies of above examples
that use a single camera. These problems have been overcome
by switching to multiple camera approaches. [7] presents a
mean-shift tracker that adjusts the pan, tilt, zoom and focus
parameters of multiple active cameras for tracking a person in
the scene. Their design emphasizes modularity and robustness
of each individual camera, so they have to broadcast a large
amount of data in a period of time (once per second) which can
degrade the performance of the whole system. An automated
surveillance system is proposed in [8] where multiple pan-tilt-
zoom cameras are used to track people in the scene. First,
a master camera finds the object of interest in its field of
view and assigns a camera to track it by using a Kalman
filter tracker. This approach also can suffer from the lack of
robustness. If the master camera fails, the system will not work
at all.

In this paper, we will present a probabilistic tracking ap-
proach for multiple pan-tilt-zoom cameras to track the objects
of interest in their field of view. The idea is that each camera
should track the object while it has maximum focus on the
details of the object. The agents (the cameras) cooperate with
each other during the tracking and share the object information
which is position, velocity, etc. to maximize the robustness
of tracking. For a real time tracking, we do not extract any
information about the shape of the object and the cameras are
not calibrated and we do not have a good estimation of the
depth of the object. Therefore, there is a possibility that we get
completely different data from the cameras about the position
of the object but each agent has a level of reliability. This level
of reliability is used in the probabilistic tracker to improve its
robustness compare to previous approaches for decentralized
data fusion such as the work by Makarenko et al [9].

In the next section, tracking by using a single pan-tilt-zoom
camera is described. A simple explanation of the Condensation
algorithm is also presented in detail in that section. Section



Fig. 1. The object of interest is the quadratic object and each cross is a
sample to which a probability is assigned. The thick cross is an arbitrary
point of the object (we consider the object as a point). The probability that
the thick cross is at the position of the dotted cross is 0.56.

III, provides the details of communication of the agents
and applying the level of reliability of each agent in the
probabilistic tracker and the section after that is devoted to
conclusion and future works.

II. BACKGROUND

A. Informal Theory

The Condensation algorithm was first introduced for visual
tracking of curved objects in a cluttered environment [1]. In
this overview, we explain tracking of every kind of objects
by defining point representation of the objects. By using this
algorithm we can track position and or velocity, etc. of an
object. The parameter or a combination of the parameters that
we want to track form thestatevector of the object. The goal
of this algorithm is to estimate the current state vector of the
object of interest. As it was said, the components of the state
vector can be position, velocity, etc. or a combination of them
and the goal of the algorithm is to estimate these parameters.
The hypothesis of this algorithm is to choose some random
vectors from the domain of the state vectors and assign them
a probability. These random vectors are calledsamples. For
instance if we want to track the position of a point which
moves on a line that has length of 10 units and is located on the
interval [0,10] on thex axis of a coordinate frame, the domain
of the tracking is that interval and the samples ([x]) are selected
randomly from that interval. For example the samples can be
vectors [1.3], [1.8], [5.0], [6.7], [9.5] which are 5 samples that
have been chosen randomly. Then we assign a probability to
each sample. These probabilities are the probability of actual
position of the object to be the same as the randomly selected
samples. So we assign a scalar probability to each sample and
these scalars form a distribution of the probabilities over the
state space. The details of defining this probability distribution
are mentioned in the next subsections.

In Fig. 1 the estimation of position of an object in the
image plane is shown. The quadrangle is the object of interest
and each cross is a sample and the result of condensation
tracker is a probability which is assigned to each sample.
This probability is the probability of the presence of one
specific point of the object of interest in the position of the

corresponding sample. For example the probability that the
thick cross in Fig. 1 (consider the object as a point) be at the
position of the dotted cross is 0.56. It should be noted that
the value of the components of the samples change during the
time but the number of the samples is constant and determined
by us. As the environment changes, we choose new samples
and assign new probabilities to them by using the dynamic
model of movement of the object and an observation made
by a sensor. Usually the dynamic model of the object that we
want to track is not known and we guess a model for that. It is
also possible to learn the dynamic model from the previously
know data from the movement of the object.

In this case, the observation is the result of processing
of the image from a camera and finding the position of the
object in the image buffer. The details of choosing samples
and assigning the probabilities and finding the probability
distributions and the theory behind the algorithm are described
in the next subsection and in the subsection C, we will show
how to apply this algorithm in the tracking by a pan-tilt-zoom
camera.

B. Formal Theory

The general idea of the Condensation algorithm is to find
a probability distribution which means a probability function
for each sample of the state vector of the object according to
the real measurements (observation) from a sensor. The state
vector at timet which is denoted byxt in this overview is a
vector of variables that we want to estimate. Depending on the
application, it can be position, velocity etc. or a combination of
them. The measurement from the sensor (in the case of visual
tracking, the camera) at timet is denoted byzt. So far we
have three terminologies: state, sample and measurement. State
vector consists of the variables that we want to estimate and we
refer to state as the space in which those variables (position,
velocity, etc.) can change. Sample vectors are specific vectors
in the state space which have been chosen randomly according
to a probability distribution. On the other hand measurement
is a vector of the form of the state vector and its value is
the value which has been read from the sensors. Since the
sensor is noisy or has a limited range we can not rely on the
sensor data (measurement) and we find a probability for the
similarity of the guessed samples with the real status of the
object. For instance, for tracking an object in an image, we
can definext =

[
x y

]
, wherex andy are the coordinates

of the object in the image plane. We find a probability
distribution for the state space according to the measurement,
p(xt|z1, z2, ..., zt), that is the probability that the state at time
t is equal toxt provided that the measurements from time 1 to
time t are equal toz1,z2,...,zt respectively. Using Bayes’ rule,
(p(A|B) = p(B|A)p(A)/p(B), p(A|B) = p(A ∩ B)/p(B)),
p(xt|z1, z2, ..., zt) is computed as follows:

p(xt|z1, ..., zt−1, zt) =
p(xt|z1, ..., zt−1)p(zt|xt, z1, ..., zt−1)

p(zt|z1, ..., zt−1)
(1)

Since the measurement at timet is independent of
the previous measurements, according to the above rules



p(zt|xt, z1, ..., zt−1) = p(zt|xt). Also p(zt|z1, ..., zt−1) is a
constant. Therefore:

p(xt|z1, ..., zt) = kp(zt|xt)p(xt|z1, ..., zt−1) (2)

We can computep(xt|z1, ..., zt−1) by applying the dynamic
model of the object motion top(xt−1|z1, ..., zt−1) which is
known from the previous time step. The dynamic is a known
motion model of the object and it can be estimated before
the start of tracking and it relates the state vector at current
time step to that of previous time step and it depends on the
intrinsic of the object and the environment in which the object
moves. The dynamic model can be defined as:

xt = f(xt−1) + stochastic part (3)

where the stochastic part is a vector of independent standard
normal variables (N(0, 1)) which are scaled by a factor that
is determined according to the noise.f also can be any
function which is determined by the designer and relates the
current state of the samples to the previous state. Because the
movement of the object is random we add a stochastic part to
the dynamic model to add randomness to the deterministic
model. We describe the simple one dimensional case of
tracking a point on a line where the state and measurement
vectors consist of only the position of the object. As shown
in Fig. 2a, we draw N samples randomly according to the
probability distribution from the previous time step. As you
see the samples are denser in high probability areas because
there is more probability that a sample is chosen in that area.

Then we apply the deterministic part of the dynamic model
to the set of samples. It should be noted that these schematics
is for one dimensional state vectors. We need higher dimension
functions as the dimension of the state vector increases.

Assume that the deterministic equation of motion of the
object is xt = xt−1 + a where a is a constant. Figure 2b
shows the samples after applying the deterministic part of the
dynamic model. Figure 2c shows the result of applying of the
whole dynamic model (deterministic +stochastic parts) to find
p(xt|z1, ..., zt−1).

So far, we have foundp(xt|z1, ..., zt−1) which is needed for
computingp(xt|z1, ..., zt). As mentioned before we have a set
of samples from the space of the state vectors. These samples
were primarily drawn randomly according to the previous time
step probability distribution. Then we applied the dynamic
model to that set of samples to get a new set of samples.
This new set of samples is the original one which has drifted
by applying the dynamic model. After this step we make an
observation by using the sensor and we adjust the weight
(probability) of each sample according to this new observation.
The details of the reweighing the samples are discussed in the
next paragraphs. We use Factored Sampling method [1] to find
the new weight of each sample. This method is described in
appendix A. In this algorithm,p(xt|z1, ..., zt−1) andp(zt|xt)
have the same role asf1(x) and f2(x) which are explained
in the appendix, respectively. So ifN → ∞ the distribution
of samples fromp(zt|xt)p(xt|z1, ..., zt−1) tends to be that
of p(xt|z1, ..., zt−1, zt). A reasonable assumption forp(zt|xt)

Fig. 2. (a) N samples are chosen randomly according to the probability
distribution from the previous time step. The samples are denser near high
probability areas. (b) This figure shows the set of samples after applying the
deterministic part of the dynamic model. Since the equation isxt = xt−1 +
a, each sample is drifted by the size ofa. The white dots are the samples
which are initially drawn and the black dots are those samples after applying
the deterministic part of the dynamic model. (c) The result of applying the
stochastic part of the dynamic model to the previous set of samples is shown.

Fig. 3. Reweighing of the samples are shown. The new weight of sample
si in proportion to the observation density isπi.

which is known as observation density is to be a Gaussian
function G(µ, σ) where µ is the mean of the Gaussian and
is located on the real measurement from the sensor andσ is
its deviation. This distribution shows that the probability that
the measurement be at the exact real position of the object
has the highest value. Fig. 3 shows the reweighing of each
sample according to the Gaussian function. It should be noted
again that we have shown the observation density for a one-
dimensional case. A higher degree function needed for higher
dimensional state spaces.

This set of samples with their new probabilities forms the
distribution that we were looking for i.e.p(xt|z1, ..., zt−1, zt)



In the next time stept + 1, we usep(xt|z1, ..., zt−1, zt) as
the previous time distribution and we draw N new samples
according to this distribution and we repeat the whole pro-
cedure. In the case of clutter where we have more than one
measurement (in the case of this one dimensional example,
if we have more than one point on the line and we want to
track one of them), we reweigh each sample according to the
nearest measurement.

Since there is more than one sample in the process (in
this case N samples), we need to pick one of them as the
representative of the real position of the point at the current
time step. There are different methods for performing this task.
Choosing the sample with the highest weight (probability) or
a sample whose weight is the median of the weights of the
samples are two ways of selecting the representative sample.

C. Tracking Mechanism for a Single Pan-Tilt-Zoom Camera

Now we describe tracking an object with an uncalibrated
camera which has the capability to pan and tilt to track the
object while it can focus on the object with variable degrees of
zoom. We define the state vector as the spherical coordinates
of one specific point on the object of the interest. This point
can be the center of mass of the object which is approximately
determined by simple processing of the projected image of the
object onto the 2D image plane. So the state vector is defined
as:xt =

[
θ θ̇ φ φ̇ r ṙ

]
whereθ andφ are angular

components andr is the distance factor,̇θ, φ̇ and ṙ are the
rate of change of these parameters respectively. The reason
that we use spherical coordinates is that since the camera is
uncalibrated and we know the angle of pan and tilt of the
camera from its control section, it is more convenient and
accurate to use this coordinate system rather than Cartesian
coordinate system.

Let us define the coordinate frame C in which we define the
coordinate of the samples like what is shown in Fig. 4. The
origin of this frame is located at the center of projection of the
camera at an initial state and itsz axis is perpendicular to the
plane that the camera resides on and they axis is perpendicular
to the center of the image plane at an initial position of the
camera. We choose N samples according to the probability
distribution from the last time stepp(xt−1|z1, ..., zt−1). Then
we apply the dynamic model which we have assumed to be a
linear first order equation to get a new set of samples. After
that we reweigh each sample according to the observation from
the camera.

Having applied the dynamic model, we measure the real
position of the object by using the camera. The measurement
vector at time t has the formzt =

[
θ θ̇ φ φ̇ r ṙ

]
So we need to map the image plane data to the real spherical
coordinates.

At each time step the pan and tilt degree of the camera (θc

and φc) are known from the control hardware. To compute
the spherical coordinates of the center of visible part of the
object that is being tracked we should consider the deviation
of that point from the current degree of pan and tilt (θc and
φc) considering the current zoom value (Fig. 4b).θI andφI ,

Fig. 4. (a) The setup for tracking a moving toy car on a table is shown. It
is assumed that the image plane at all degrees of pan and tilt of the camera
is a sphere which is shown in the schematic. Each sample has a projection
on the image plane and we assume a depth for the samples. For example the
ith samplesi has the depth ofri. (b) A focused section of the image plane
is shown.l1 andl2 are the projection of the optical axis of the camera in the
current degree of pan and tilt (The solid red line) on thex-y andy-z plane
respectively.θc is the angle betweenl1 and thex axis andφc is the angle
betweenl2 and thez axis. O is the projection of one point of the object on
the image plane.

the angular deviation of the object of interest from the center
of image are evaluated using simple pinhole camera model.
So θ andφ are defined asθ = θc− θI andφ = φc−φI . Now
we should find the depth of the object (ther parameter in the
measurement vector). By using the priori knowledge about the
dimension of the object and the width and height of the object
in the image plane, we can have an estimation that how far
the object is from the center of projection of the camera. To
compute the velocity components in the measurement vector
at the current time step, we calculate the difference between
the value of the other components of the measurement vector
in the current and the last time step. After the measurement is
done we reweigh each sample proportional to the observation
density p(zt|xt) which is assumed to be a six dimensional
Gaussian whose mean is located on the nearest measurement to
each sample by following the procedure which was described
in the last subsection. Now we should pick one of the samples
as the representative sample so that the agent changes its
direction toward that sample. The sample that has the median
of the weights of the samples is chosen as the estimated
position of the object. Since the camera has a position control,
we send to the camera the difference between the current
direction of the camera and the direction of the chosen sample.
Also the camera adjusts its focus according to the estimated
distance of the object. Then we propagate the new probability
distribution over the state space to next time step to continue
tracking.



III. MULTIPLE CAMERA TRACKING

In this section, we describe the tracking algorithm using
multiple pan-tilt-zoom cameras. Since there is a possibility of
failure or occlusion of one camera, we increase the robustness
of the system by increasing the number of cameras that
track the object. Also different views of an object help us in
reconstructing of its 3D structure. So we try to maximize the
number of the cameras that track one object at each time step.
It should be noted that each agent has as maximum zoom
as possible on the object during the tracking. The amount
of zoom depends on the dimensions of the projection of the
seen object on the image plane. But extracting the object
information (size, center of mass, etc.) in a zoomed view of an
object is somehow unreliable and this unreliability is caused
by this fact that there is a possibility that the object is not
visible completely in the zoomed view. The non-visibility of
parts of the object adds more noise in approximating the real
position of the object. In this section we describe how we
deal with this unreliability to increase the robustness of the
probabilistic tracker.

In the following subsections we explain the actions that each
agent can take during the tracking.

A. Cooperative Action Selection

Each agent can take three actions during the tracking. These
actions are: Zoom-out, Communication and Tracking.

1) Zoom-out:This action is taken by an agent when all of
the agents have no idea about the position of the object. By
taking this action each agent widens its field of view to cover
more space and increase the probability of finding the object.

2) Communication: The other action that an agent can
take is the communication action. This action is taken when
at least one of the agents has an observation of the object.
An architecture like the Blackboard architecture in [10] has
been implemented for the coordination of the agents where
a central unit applies the Condensation algorithm and uses
the agents’ observation densities for finding a new probability
distribution over the state space. The assumption is that the
relative position of the cameras is known initially or will be
determined through communication. Each agent has its own
observation density which depends on thelevel of reliabilty
of the agent. We denote this quantity byLRt

i which is the
level of reliability of agenti at time t. As mentioned before,
each agent has alevel of reliabilty. This level of reliability
determines how much the central unit can rely on the data of
an agent. An agent has the highest level of reliability if it can
observe the object completely. The other agents that see the
object partially have a lower level of reliability. If two agents
see an object partially, the agent that has less zoom value has
higher level of reliability which means the data from a less
focused camera is more reliable. We describe the algorithm for
cooperative tracking of two agents but it is easily extendable
to multiple agents.

We assume a single general probability distribution over
the state space (space of tracking) for all of the agents. As
mentioned in the explanation of the Condensation algorithm

Fig. 5. Reweighing of each sample according to different agent’s observation
density is shown.pi(zt|xt) andpj(zt|xt) are observation densities of agenti
and agentj respectively.LRt

i > LRt
j so thepj(zt|xt) has a larger deviation.

we choose N samples proportional to the probability distribu-
tion from the previous time step i.e.p(xt−1|z1, ..., zt−1). After
applying the dynamic model which is assumed to be a linear
first order differential equation because of the mechanical
limitation of the camera, we need to reweigh each sample
according to the observation densities. At this step, each agent
transmits its level of reliability and the measurement vector
(which are the result of processing of the image plane data)
to the central unit. We assume that the observation density
for each agent is a Gaussian that changes over time. The
central unit transforms the coordinates of the measurement
vector to a reference world coordinate frame and uses the
new measurement vector to findµ (the mean) of the Gaussian
and uses level of reliability to determine the deviation (σ)
of that. The deviation of the Gaussian for agenti at time
t is proportional to inverse of theLRt

i which means that
the observation density from an agent with higher level of
reliability has less deviation and peak of the Gaussian is
sharper. Like what is mentioned in the background section we
reweigh each sample according to these observation densities
and each sample is reweighed by the distribution whose mean
is the nearest to that sample. Fig. 5 shows the reweighing
of the samples considering thatLRt

i > LRt
j . A simple one

dimensional case is shown in the following figure.
After the central unit completed the reweighing of the

samples, it broadcasts the sample with the median of weight
of the samples to all of the agents as the current belief of the
system for object position. The new probability distribution is
normalized and propagated to the next time step as it is needed
for tracking in the next time steps.

3) Tracking: After applying the Condensation algorithm,
the central unit estimates the position of the object and
broadcasts this estimate to all of the agents. Each agent adjusts
its degree of pan and tilt according to the new estimate. The
zoom value of each agent is determined according to the
estimated distance of the object from the center of projection
of the camera.

IV. CONCLUSION

An overview of a probabilistic tracker (the Condensation
algorithm) which is able to model non-linear and non-Gaussian
motions was presented. Then we applied the tracking algo-
rithm to track an object according to multiple degrees of



Fig. 6. The experimental setup with two cameras is shown in the picture.
The crosses are the measured position of the object by the cameras.

freedom of one pan-tilt-zoom camera and the idea was to track
an object with maximum possible zoom on it. After that, for
increasing the robustness of tracking we added more pan-tilt-
zoom camera agents to track the object. We defined a level of
reliability for each agent and used that value for reweighing
of the samples and finding a new probability distribution
over state space. The major disadvantage of the mentioned
algorithm is that we can never know the exact position of the
object which may cause some imperfections in tracking. Also
a better dynamic model can result in a better tracking result.

The computational requirements of this method of tracking
are somehow high so the tracking is done in near real time.
The performance can be improved by some methods such as
[11] in which they have improved the efficiency by the use of
adaptive size of sample sets.

It should be noted that each agent can track the object
itself without communicating with the central unit in the case
of failure of the central unit, etc. This tracking system has
many applications such as surveillance systems in buildings
and parkings, tracking athletes in the sport fields while we
can get a zoomed view of them.

APPENDIX A: FACTORED SAMPLING METHOD

Suppose we have a probability distribution that is the result
of multiplication of two other distributions. The factored
sampling method is used to find an approximation to the
probability density function by using samples from those two
distributions.

Assumef(x) = f2(x)f1(x), wheref1(x) andf2(x) are two
probability distributions. A set of sampless = {s1, s2, ..., sN}
is drawn randomly fromf1(x) (Fig. 7).

Then we find the probability assigned to each sample in
proportion tof2(x). The probabilityπj of the jth sample in
proportion to distribution off2(x) is computed as follows:

πj =
f2(sj)∑N
1 f2(sj)

, j = 1, ..., N (4)

So we have found a new sample set, where the distribution
of the probabilities of the new samples tends to that off(x), as
N →∞. Therefore, the distribution of the probability of these
new samples is an approximation to the distributionf(x).

Fig. 7. Sampling fromf1(x). A set of N samples are drawn randomly
with a probability proportional tof1(x). So we see more samples under high
probability areas.

Fig. 8. (a)f2(x) is shown in this figure. (b) Each sample is reweighed by
the above equation.πjs are the new weights.
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