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Abstract— A fundamental challenge for robotic target-tracking
systems is to cope with cases in which the target is not seen for
long periods of time. An additional challenge in multiple-robot
systems is to coordinate robot activity to best track targets with
limited visibility. We describe a novel technique that combines a
particle filter target model with a potential field robot controller.
Robots are attracted to points sampled from the particle cloud
that models the probability distribution over the target’s position,
subject to environmental constraints. We show how this method
can be used as a coordination strategy whereby a team of robots
cooperatively minimize the uncertainty in the pose of a tracked
target. Simulation results are presented.

I. INTRODUCTION

Probabilistic approaches to automatic target tracking have
recently become popular due to their robustness in tracking
in the presence of uncertainty. In particular, multi-modal rep-
resentations have proved successful when targets are partially
or briefly occluded.

In addition to extensive work on target tracking in the
computer vision community, several authors have described
tracking systems using autonomous mobile robots. As an
example of a recent work Schulz et al. [1] have introduced
sample-based joint probability data association filters to track
multiple moving objects. Montemerlo et al. [2] present a
probabilistic algorithm called the conditional particle filter
to track a large distribution of people locations conditioned
upon the robot poses. These approaches are based on the
decisions of a single robot which results in non-robustness
against the failure of that robot. Target tracking can be
improved by deploying multiple robots but a strategy is needed
for coordination of the robots to improve the efficiency of
tracking. Jung and Sukhatme [3] have proposed an example
cooperative system. Their approach, in common with the other
approaches mentioned above, work well when the target lies
in the sensors’ field of view or it has a short-term occlusion
but they do not address the long-term occlusions which cause
large uncertainty for the tracker.

The formal class of pursuit-evasion problems guarantees
that even in the worst cases in which the evaders move
arbitrarily fast, any evader would be found by a group of
pursuers. Gerkey et al. [4] recently introduced a new class
of searcher, the φ-searcher where each pursuer has a φ radian
field of view.

A practical deficiency of the known solutions to the pursuit-
evader problem is that they are highly computational intensive
and do not scale well in application to multiple-robot systems.
For example, in Gerkey’s approach, the joint information and
action space grows exponentially in the number of searchers.
A further limitation is that these methods do not address the
continuous tracking of intruders once they are found.

We propose a new tracking and coordination technique
which requires a minimal amount of communication among
the agents to coordinate multiple robots in order to minimize
the uncertainty about the location of a moving intruder. As
mentioned above, existing tracking methods (excluding the
pursuit-evasion methods) focus on combining sensor measure-
ments to track the object of interest. The problem arises when
the object of interest goes out of the field of view for a long
period. Our method simultaneously addresses this problem and
the problem of coordinating multiple robot trackers.

A. Task and Approach

Consider the task of a mobile robot tracking a person
through a building. Fig. 1 shows the situation where a robot
has followed its target down a corridor to a T-junction, and
the target has left the robot’s sensor field of view. Assume
that the robot could not detect whether the person moved
to the right or the left. The robot has a probabilistic model
of the target’s future movements, and the two modes of the
probability distribution over target location can be seen in
the split particle cloud. If a particle falls within the sensor’s
field of view, but no target is detected, the particle can be
eliminated. Considering this model, we can state a simple rule
that maximizes the probability of observing the target: the
robot must visit the location of all particles with its sensors.

Fig. 1. A robot (bottom) tracking a person (stick figure) who has disappeared
from view. The point-cloud represents a set of hypotheses about the person’s
current position, generated by a probabilistic model of his movements.



The task of our robot controller therefore is to minimize
the uncertainty by maximizing the number of visited particles.
This approach was taken by Rosencrantz et al. [5] to locate the
opponents in a laser tag game in which the opponents might
be under pervasive occlusions. However, their work mostly ad-
dressed the improvement of the tracker for multiple opponent
tracking, rather than coordination of multiple trackers.

In this paper, a particle filtering method has been imple-
mented to represent arbitrary multi-modal densities for the
location of the intruder. Then we apply a potential field
method on top of the particle filtering for coordinating multiple
agents to reduce the uncertainty in the environment. Each
agent decreases the uncertainty in target position estimate by
sweeping as many particles as it can. Coordination between
agents is achieved by each robot selecting a subset of the
particles to observe.

Section II presents an outline of the probabilistic tracking
method, robot mapping and localization. Section III introduces
a novel technique where a particle cloud and map are com-
bined to create a potential field robot controller for a single
robot. In section IV, we present cooperative action selection
and optimization strategies for searching the environment by
multiple robots. An experimental section then compares the
performance of a pair of robots tracking a target without
coordination, and with two alternative coordination methods.

II. PROBABILISTIC TRACKING

A. Prerequisites: Localization and Mapping

We assume a map of the robot’s workspace is available.
Such a map of can provided a priori, or acquired automatically
online or offline using tools such as those described by Thrun
[6]. For the experiments in this paper, we supply a priori
maps. Also, the robots need an estimate of their location and
orientation. Using the map, odometry and laser scan data, good
pose estimates are obtained using Monte Carlo localization [7],
where the belief about the position of the robot at the current
time step, Bel(xt), can be estimated by recursive update of
the following equation:

Bel(xt) = ηp(zt|xt)

∫

p(xt|xt−1, at−1)Bel(xt−1) dxt−1.

(1)
where, p(zt|xt) is the sensor model and p(xt|xt−1, at−1) is
the next state density or motion model and at−1 is the action
performed in the last time step. The separation of mapping
stage from localization can somewhat help us to reduce the
computational burden of the whole system.

B. Particle Filter Tracking Method

Since our target of interest is moving autonomously, and
may be invisible to our sensors for extended periods, our
probabilistic estimate of its position may have a multi-modal
density. Thus we use particle filtering to track it. For instance,
such a multi-modal distribution is caused when the particles
arrive at a 3-way junction of corridors as shown in Fig. 1.
According to a pre-defined motion model of the target, com-
bined with the map, the pose-estimate particles spread into the

available space. The state that we want to estimate consists of
the location and orientation of the object. So our state vector
has the form xt = [x, y, θ] where x and y are 2D Cartesian
coordinates of the object on the map and θ represents its
orientation.

In the cases when we have an observation of the object,
a probability distribution over the state space is found ac-
cording to the measurement, p(xt|z1, z2, ..., zt), that is the
probability that the state at time t is equal to xt provided
that the measurements from time 1 up to time t are equal to
z1,z2,...,zt respectively. Using Bayes’ rule, p(xt|z1, z2, ..., zt)
is computed as follows:

p(xt|z1, ..., zt−1, zt) =
p(xt|z1, ..., zt−1)p(zt|xt, z1, ..., zt−1)

p(zt|z1, ..., zt−1)
(2)

Since the measurement at time t is independent of
the previous measurements, according to the above rules
p(zt|xt, z1, ..., zt−1) = p(zt|xt). Also p(zt|z1, ..., zt−1) is a
constant. Therefore:

p(xt|z1, ..., zt) = kp(zt|xt)p(xt|z1, ..., zt−1) (3)

We can compute p(xt|z1, ..., zt−1) by applying the dynamic
model of the object motion to p(xt−1|z1, ..., zt−1) which is
known from the previous time step. The dynamic is a known
motion model of the object and it is approximated before
the start of tracking and it relates the state vector at current
time step to that of previous time step and it depends on the
intrinsic properties of the object and the environment in which
the object moves. The dynamic model can be defined as:

xt = f(xt−1) + stochastic part (4)

where the stochastic part is a vector of independent standard
normal variables which are scaled by a factor that is deter-
mined according to the noise. f also can be any function which
relates the current state of the samples to the previous state.
Because the movement of the object is unpredictable from
the point of view of the tracker, we add a stochastic part to
the dynamic model to add unpredictability to the deterministic
model. For example, the intruder can stop or move backward
instead of moving forward which is forced by the deterministic
model. The next step would be the reweighting of the samples
to find the probability distribution of the object over the state
space. Three cases have been considered for the reweighting
step:

1) We define the area S which is a circular segment as the
sensor visibility of the agents. This area is centered at the
robot position and its central angle, ϕ, is in the range
θ − F

2 to θ + F
2 where θ is the robot orientation and

F is the field-of-view angle subtended by the sensor.
Finally, the radius of the circular segment shows the
sensor range. If the ith sample si ∈ S and the line
that connects the sample to the robot does not intersect
an obstacle, wi the weight of that sample will be zero.
This case is shown in Fig. 2a. Thus the robot deletes



(a) The robot assigns low
weights to the visited particles.

(b) The particles which cross an
obstacle will be given low weight.

(c) Reweighing the particles according to the sensor model.

Fig. 2. Weighing schemes.

the particles that it now knows do not correspond to the
real position of the target.

2) If st
is

t−1
i ∩ Cobs 6= ∅, wi the weight of ith sample

would be zero. st
is

t−1
i is the line segment that connects

the position of sample i at the current time step to its
position in the previous time step and Cobs is the space
of all of the obstacles present in the map. Intuitively, it
means if the particles go inside an obstacle or through
a wall, their weight becomes zero. Fig. 2b shows this
case. This models the constraints on the target that it
can only move through free space.

3) If we have an observation of the object, the Factored
Sampling method [8] is used to find the new weight of
the samples. If the number of samples goes to infinity the
distribution of samples from p(zt|xt)p(xt|z1, ..., zt−1)
tends to be that of p(xt|z1, ..., zt−1, zt). A reasonable
assumption for the sensor model, p(zt|xt), is to be a
Gaussian function. Fig. 2c shows a one dimensional
update model.

If none of the above cases happened, the sample keeps
its previous weight or we can assign an equal weight to all
of the samples. We describe below how these particles and
their weights are used to track the object. In the traditional
particle filter tracking system, some clustering method is used
to decide what the current ‘actual’ estimate is. Usually the
particle with the mean or median of the weights is considered

Fig. 3. The grey arrow shows the Euclidean distance between two points
which is not useful for calculating the attraction force because of the presence
of the obstacle.

to be the target. We avoid this clustering step, and thus
avoid the artifacts it can introduce. As we may not have
an observation during the tracking, we try to maximize the
number of visible particles while simultaneously optimizing
the joint motion of the robots.

III. TRACKING USING POTENTIAL FIELDS

Our goal is to minimize the uncertainty by maximizing the
number of visited particles. Also, the likelihood of finding the
target is found is maximized if all the particles are swept off.
A problem with existing methods such as POMDP (Partially
Observable Markov Decision Processes) which seems well-
suited to solve this kind of problem, is that their computational
complexity or memory needs grow exponentially with the
number of robots. The problem also can be simplified to find
a polygon in the environment to cover as many particles as
possible and move the robot with a limited field of view to
that area to cover a large number of particles. But there is no
polynomial algorithm for performing these calculations.

We implement a potential field method for doing this task
which is O(Npn) in the worst case where n is the number
of cells if we represent the map by grid cells and Np is the
number particles used in the tracking algorithm. For speed, the
number of particles used for the calculation of the forces can
be decreased by selecting at random a subset of the particles.
Since the particle filtering results in producing more particles
in the high probability areas, the chance of choosing particles
in those areas would be higher and the distribution of the
particles is approximately the same. So we perform the update
stage for the whole set of particles but calculate the forces
based on the randomly chosen particle subset. In the following
subsection we explain the method for finding the distances
on a map (instead of Euclidean distance) and after that, the
application of this method for tracking is described.

A. Finding map distances

For maximizing the number of visited particles, the idea is
that each particle exerts a force on the robot to attract it. So
the greater number of particles in an area, the larger the force
imposed on the robot. The magnitude of this force is inversely
proportional to the distance from the particle to the robot. This
means that the robot tends to sweep the nearest particles first.
But when the robot’s mobility is limited by obstacles, as shown
in Fig. 3, the Euclidean distance from particle to robot does not
indicate how quickly the robot can reach the particle. Instead
we must calculate the shortest traversible path using the map.



Shortest-traversible-path calculations are done using a sim-
ple occupancy-grid flood fill method, though any equivalent
method could be substituted. The distance algorithm outputs
a value which is assigned to each grid cell and shows the
distance of that cell from the cell where the robot is located.
The flood-fill works as follows: First, we assign a zero value
to the cell in which the robot is located and an infinite number
to the obstacles. Then, we pick one of the unoccupied four-
connected cells around the robot cell (top, right, bottom and
left cell; the order is important) and increment its value by
one and put that cell in a queue and pick another neighbour
cell until there is no cell around the current cell without an
assigned value. After that, we pop the first cell in the queue
and do the same thing for its surrounding cells. This algorithm
is continued until there is no cell in the queue. This method
returns the minimum map distance of a point to the current
position of the robot and its time complexity is O(n) if it is
implemented by a queue where n is the number of cells on
the map. Fig. 4 shows an output of this method for measuring
the map distance of a cell of the map.

Thus we find the map distance of each particle from the
robot as required for the calculation of the forces exerted by
the particles. These calculations are explained in detail in the
next subsection. For simplicity, from now on we represent the
map distance of a cell, which is located at row i and column
j, from the robot cell by ∆(i, j).

B. Computation of potential forces

The navigation of our robots is based on the total force
which is exerted on the robots by randomly selected particles.
That means at each time step, we apply the normalized total
force to the robot to find its next target position. An underlying
robot controller based on the extended Vector Field Histogram
(VFH+) [9] performs the task of avoiding local obstacles while
moving according to the potential field. To compute the total
potential acting on a robot, we find the force vector for each
particle. Then, we sum the vectors to find the magnitude and
direction of the resultant total force.

To find the approximate direction of the particle force, we
start from the cell where the particle is located and we check
its surrounding cells, the cell with the minimum value will be
selected. We continue performing the same procedure for the
minimum-value cell until we reach a certain distance from the
robot cell (this distance is approximated by the circle in Fig. 4).
The direction of the force is approximated by the direction of
the vector from the robot to the cell that is reached through
the above procedure. The reason that we do not use directly
the vector from the robot to the particle, is that the vector may
intersect obstacles that block the robot’s way. Fig. 4 shows an
example of finding the force direction. The dashed line shows
one of the paths from the red cell to the robot cell and the
vector from the robot to the cell with value 3 can be considered
as the force direction.

If mi and ni are the row and column index of particle i

in the map grid, the magnitude of the force exerted by that

Fig. 4. The vector shows the direction of the force which is exerted from a
particle located in the red cell.

(a) (b)

Fig. 5. Simple cases of minimizing the uncertainty by two robots.

particle, Fi, is calculated by the following Gaussian model:

Fi =
1

σ
√

2π
e−

1
2

∆2(mi,ni)

σ2 (5)

where the σ is assumed to be a constant or it can be determined
according to the data. This equation means that the closer
particles exert a larger force and the first priority of the robot
is to sweep the nearest particles. Nevertheless, if the number
of particles is large in an area the robot will be attracted to
that area neglecting the nearest particles. The magnitude and
direction of the attractive force is determined by the vector
summation of the forces from all of the particles which were
selected randomly from the whole set of particles. The robot
will be driven around according to the direction of this force.

The main criticism of potential field methods in general is
that rapidly changing local optima can cause an oscillatory
behaviour in the navigation of the robot. However, because of
the random nature of the particle filtering method and clearing
of the particles during the navigation, the symmetry breaks
and we have not observed adverse oscillations in the robot
movements.

This method is very easily extended to rationally coordinate
multiple tracking agents, as described in the next section.

IV. COORDINATION STRATEGIES

The expected uncertainty minimization and tracking per-
formance of the system can be improved by simply adding
more robots, but to maximize performance, the robots’ actions
should be coordinated in some way. In this section we describe
how multiple robots cooperate to perform the assigned task
according to the potential fields which has been formed by
the particles. The assumption for the coordination method is
that each robot has an estimate of the location of the other
robots. Each robot can send its global position information to



the teammates through communication or it can localize the
other robots in its coordinate frame. Both of these constraints
are feasible using current methods. In our simulations, we use
communication among the robots. The communication can be
direct communication between two robots or in the case of
limited communication range, a robot can get the location
information of one robot through communication with a third
robot.

As stated before, we want to minimize the uncertainty by
maximizing the number of visited particles. So our goal is to
cover an area that is occupied by larger number of particles
and to prevent the particles from further spreading. Two simple
cases are shown in Fig. 5. The first figure (a) shows the
case where we have two high density regions that means the
chance of finding the intruder is high in those two regions.
The best action to minimize the uncertainty is that one robot
goes toward one cloud of particles and the other robot goes
toward the other cloud. The next figure (b) shows the case
that there is one high density area. The best action to shrink
the particles’ area and prevent it from further growing is that
the robots approach the covered area from different directions.
Our coordination method tries to achieve the above goals while
minimizing the length of path that a robot navigates.

For the coordination of the motion of the robots, we
compute the cooperative forces which are exerted by the set
of particles to each robot. These forces will determine the
navigation direction of the robots. First, we assign a value to
each particle according to density and distance of the robots.
The more negative the value, more desirable for the agent to
go toward that particle. This value which is represented by
Vn,j for particle n relative to agent j is determined by:

Vn,j =

N
∑

i=1,i6=j

{

−wiFnj ∆i > ∆j ;
wiFni ∆i ≤ ∆j .

(6)

where Fnj and Fni are the forces that particle n imposes on
agent j and agent i, respectively and are computed according
to Eq 5. N is the number of agents used for tracking and wi

is a priority factor which is used to assign higher priorities
to some agents. Also, ∆i and ∆j are the map distance of the
nth particle from agent i and agent j. Intuitively, this equation
means that the parameter V will be more positive for a selected
particle and a specific robot if the density of the other robots
around the particle is high. That means the other robots will
take care of the particles nearest to them. We normalize these
values to get positive force magnitudes. The normalization is
done by an exponential function again. So, the force magnitude
that particle n exerts to agent j in presence of the other robots,
Fn,j , is calculated as follows (note that Fn,j is different from
Fnj since Fnj is that force without the presence of the other
robots):

Fn,j = e−(Vn,j−Vmin)2 (7)

where Vmin is the most negative value. The direction of the
force is also found by the procedure described in section III.B.
Now, we find the vector sum of the forces which are exerted

on one robot by the set of particles, thus:

F tot
j =

Ns
∑

n=1

~Fn,j (8)

where Ns is the number of randomly selected particles. As
mentioned before, for the sake of efficiency, we use a small
set of particles for force calculations and only the update step
(in particle filtering) is done for the whole set of particles.
The direction of navigation of robot j is dependent on F tot

j .
In the next section, the simulation results of this coordination
method are shown.

V. EXPERIMENTAL RESULTS

Our experiments are done in simulation using the
Player/Stage robot development and simulation system [10].
Our Stage models approximate ActivMedia Pioneer-3DX ro-
bots with SICK LMS-200 laser range finders for localization
and navigation. We also use a Fiducial-finder to detect the
objects of interest, modeling a feature detector on a camera or
other sensor. Fig. 6 shows a run of the system on simulated
robots. There are two teammates (red robots) that try to catch
the intruder (the blue robot) by cooperative uncertainty mini-
mization. The robots exhibit desirable behaviour: the searcher
robots go toward the particles from two different directions.
Figs. 6(a), 6(b) and 6(c) show the Stage snapshots in different
time steps and the distribution of the particles on the map at
the corresponding simulation time are shown in Figs. 6(d),
6(e) and 6(f).

Fig. 7. No coordination, Shared observation and pose and Shared particles
(from left to right) are three cases shown in this diagram. The light gray area
shows the average percentage of time an agent has spent before visiting the
object for the first time. The dark gray area is the average percentage of time
that the robots had no observation after they see the intruder for the first time.

We performed three types of experiments in an indoor office
environment whose map is represented in Fig. 6 to show
the performance of the coordination methods compared to
the case when the robots do not cooperate. In the first case,
we tested two searcher robots to find the intruder without
any coordination strategy. In the second case, the teammate
robots communicate their pose and observation and in the last
experiment the teammate robots share the set of randomly
selected particles used in force calculations as well as the pose



(a) (b) (c)

(d) (e) (f)

Fig. 6. Simulation Results. There are two teammates (red robots) which try to catch the intruder (the blue robot). (a), (b) and (c) Stage snapshots in different
simulation times (from left to right). (d), (e) and (f) The particles’ distribution in the corresponding simulation time.

and observation communicated through a TCP connection. For
these experiments, the range of the robot sensors is assumed
to be 8 meters with an angle of view of 120 degrees while
the environment dimension is 24m× 20.5m. The results that
are shown in Fig. 7 were gathered from 10 trials of five
minutes of tracking one randomly moving intruder by two
searchers (the start position of the intruder was also random).
The light gray area shows the average percentage of time a
searcher spends before first locating the intruder. That means,
how successful were the teammate robots in decreasing the
uncertainty of initially uniformly distributed particles. The
dark gray area is the average percentage of time that the
searchers had no observation after they see the intruder for the
first time. The diagram shows the total time that the robots
have no observation (sum of the values of light and dark
gray areas) in the shared-particle and non-shared particle case
is less than that of no-coordination case, indicating that the
performance is improved on average by cooperation.

VI. CONCLUSION AND FUTURE WORK

We have described a method for a team of mobile robots to
cooperatively track a moving target. This approach addresses
the main limitation of previous approaches in that it actively
minimizes the uncertainty caused when the target is occluded
for long periods. A particle filtering method represents the
multi-modal uncertainty in the estimated pose of the target.
Then a potential field is generated using the location of parti-
cles directly as input - no clustering of particles is performed.
The potential field guides the robots to visit as many particles
as they can to reduce the uncertainty in the environment and
to prevent the uncertainty area from further growing. The
algorithm is extended to multiple robots by allocating subsets
of particles to each robot. We used a simple nearest-robot filter

to achieve this.
We are currently implementing this system on real robots

tracking humans. In collaboration with vision researchers, we
will use activity recognition methods (recognizing running,
walking, etc.) to estimate online the parameters of a motion
model for humans. Also, by using methods from the literature
cited above, method can be easily extended to multi-target
problems.
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