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Abstract

We propose a new method for learning probabilistic

part-based models of objects using only a limited number of

positive examples. The parts correspond to HOG bundles,

which are groupings of HOG features. Each part model is

supplemented by an appearance model, which captures the

global appearance of the object by using bags of words of

PHOW features. The learning is invariant to scaling and in-

plane rotations of the object, the number of parts is learnt

automatically, and multiple models can be learnt to allow

for variations of 3D viewpoint or appearance. Through an

experiment, we show that 3D multi-view object recognition

can be performed by a series of learnt 2D models. The

method is supervised but can learn models for multiple ob-

ject viewpoints without these viewpoints being labeled in the

training data. We evaluate our method on three benchmark

datasets: (i) the ETHZ shape dataset, (ii) the INRIA horse

dataset, and (iii) a multiple viewpoint car dataset. Our re-

sults on these datasets show proof of concept for our ap-

proach since they are superior or close to the state-of-the-

art on all three datasets while we do not use any negative

examples.

1. Introduction

In this paper, we propose a new method for learning

part-based models for object categories. These models are

augmented by appearance-based models and then tested on

single and multi-view detection tasks. To better model the

variations in the appearance or 3D viewpoint of the objects,

in contrast to the current part-based methods (such as [4]

and [7]), we do not specify the number of object models

or their constituent parts. These numbers and the parame-

ters corresponding to the spatial relationship of the object

parts are determined automatically by the learning method.

We tackle the difficult problem of simultaneous structure

and parameter learning by introducing a new compositional

Figure 1. The part-model of the horse is illustrated. Parts are

shown by yellow rectangles, which correspond to HOG-bundles.

The HOG-bundles are computed by grouping neighboring HOG

cells (indicated by similar colors) and shown in the left and right

images that correspond to the gradients with left-to-right and right-

to-left orientations. These gradients are described by two different

parts of the HOG feature vector. The colored lines show the dom-

inant orientation of each cell. (Better viewed if zoomed in)

learning approach.

Our compositional learning method proceeds by build-

ing part-based models by combining elementary compo-

nents incrementally. This can be seen as a type of breadth

first search in the space of object models. These part-based

models are generative which enables our learning process

to use model selection criteria. The learning only requires

positive examples of each object category and is supervised

in the sense that we know the label and bounding box of the

objects during learning. However, we show the method has

the capability of learning multiple 2D models to describe an

object seen from different viewpoints without using any 3D

viewpoint labels. The learning is also invariant to scale and

in-plane rotation.

The object parts correspond to HOG-bundles, which are

grouping of HOG features [5] and are computed from im-

ages in a pre-processing step. The HOG-bundles typically

correspond to parts of the object (Figure 1), and so our

object models can be used to parse the object into parts

(though this is not the main goal of this paper). We also



use histograms of vector quantized PHOW features [1] for

modeling the global appearance of the object. Overall, the

HOG-bundles, supplemented by PHOW features, provide a

rich and intuitive representation of the object.

Related work. One of the popular approaches in object

detection is to learn a codebook of object features and use

them later for recognition of new instances. Fergus et al.

[8] propose an unsupervised generative model for config-

urations of the codebook words of objects. Leibe et al.

[15] learn a shape model to specify where on an object a

codebook entry may appear. Zhang et al. [22] investigate

combining different detectors and descriptors with a classi-

fier that can effectively use the information provided by the

features. These features are sparse, so even if a generative

model is learned, only a sparse set of object points can be

generated.

Part-based models have proved successful on difficult

object detection datasets recently. The Latent SVM work by

Felzenszwalb et al. [7] or the work by Crandall et al. [4] are

examples, where they describe a method of object detection

using deformable part models. Kumar et al. [13] propose

another approach to discriminative learning for part-based

models. The advantage of our method to these methods is

that we learn the number of parts (i.e. the graph structure)

automatically while they use a specified number of parts.

They also learn a fixed number of models for each object

while our approach learns the number automatically, which

allows better description of intra-class variability and is im-

portant for 3D recognition. Moreover, they use EM-type

algorithms for learning, which requires good initialization,

while our approach exploits compositionality to perform

learning and requires no initialization.

This paper is most closely related to work which learns

generative models of objects such as the compositional

learning work by Zhu et al. [23] which is based on edge

maps of objects or related work based on interest points

[24]. But the method described here is based on different

image features and uses a different (but related) search strat-

egy. Work by Su et al. [18] describes a generative model

for recognizing object classes and their 3D viewpoints but

uses motion cues from video sequences (instead of static

images). Lee et al. [14] also propose an unsupervised gen-

erative approach based on Deep Belief Networks, but this

approach has not been tested on difficult datasets including

significant scale and viewpoint changes.

This paper is organized as follows. Section 2 describes

the image features that we use and, in particular, defines the

HOG-bundles. Section 3 describes the part-based model

and its inference algorithm. Section 4 describes how the

part-based models are learnt. Section 5 introduces the

appearance-based models and describes how these are com-

bined with the part-based models. Section 6 describes the

implementation and gives the results on the datasets that in-

clude single and multi-view images of objects.

2. Image Features – HOG Bundles and Bags of

Words

Our object models use two types of image features which

are extracted from the image in a pre-processing stage: His-

tograms of Oriented Gradients (HOGs) [5] and PHOW [1],

which are used by the part-based and by the appearance-

based models respectively.

An image I is represented by I = {zi : i = 1, ..., N} in

terms of HOG-bundles described by z = (r, θ, f), where

r is the position, θ is the orientation, and f = (fh, fw)
is the height fh and width fw of the bundle. The number

of HOG-bundles in an image is denoted by N . This can

be supplemented – for the appearance-based models – by

PHOW features Ph(r) as a function of position r.

The part-based models use HOG-bundles because they

are robust to local variations in shape and image intensity.

They also provide a richer description of the object than

interest points, which are often used to capture the salient

structures of the object. Moreover, compared to features

such as the edge features used in [23], there are advantages

to using HOG-bundles for learning because: (i) each HOG-

bundle has distinguishing attributes (e.g., size, height and

width), and (ii) there are only a few hundred of them in

each image. The HOG features are computed following [7]

where the orientations are quantized into 18 bins, resulting

in a 31-dimensional feature vector for each HOG cell.

We compute HOG-bundles, illustrated in Figure 1, by

grouping neighboring HOG cells which share similar prop-

erties using the following grouping rules: Two HOG cells

are grouped if they are neighbors in the grid image and sat-

isfy the following criteria:

• The difference between the feature vectors of two cells

are small, as computed by the χ2 distance function

over the feature vectors.

• The orientation with the maximum magnitude should

be similar for two HOG cells. Usually, the cells that

belong to a part have a similar orientation.

• HOG cells with orientation in many directions will not

be grouped, since they usually correspond to randomly

textured areas such as grass. This is quantified by the

squared difference |Ω−ω|2, where Ω is the maximum

magnitude of the orientation part of the feature vec-

tor, and ω is the mean of the magnitudes. However,

we group the cells that correspond to uniform intensity

regions (low-magnitude gradient cells).

To build the HOG-bundles, we start from an arbitrary

cell in the image and check if its neighbors satisfy the

grouping criteria. If they do so, we group them and check



Figure 2. Left: the geometry of the part-based models illustrating

θ, φ, fh, fw, r. The first reference part (corresponding to w1) is

shown in blue. Right: the graphical model. All parts are con-

nected to the two reference parts w1,w2. These reference parts

are chosen by the learning algorithm.

for the neighbors of neighbors until all of the cells in the

image are processed. Each HOG-bundle is approximated

by a rectangle and has the following attributes: position of

the center (r), width (fw), height (fh), and orientation (θ),

which is the mean of the orientations with the maximum

magnitude in the histograms of the constituent cells.

The HOG-bundles can overlap because the grouping is

performed based on two different parts of the HOG fea-

ture vector representing the gradients with left-to-right and

right-to-left orientations as shown in Figure 1 (i.e. we con-

sider dimensions 1 to 9 and 10 to 18, separately).

In addition to HOG-bundles that mainly capture the ob-

ject contours and uniform gradient regions on the object, we

use the PHOW features [1] (a variant of SIFT computed at

multiple scales) in our model to capture regional appearance

properties of the objects. We have adopted the implementa-

tion by [20]. These features are relatively invariant to local

spatial and intensity changes. We denote these features as

Ph(r), and they are computed densely as a function of po-

sition r. Within any image window, we can compute the

histogram H(Ph(.)) of the PHOW features using the stan-

dard clustering techniques.

3. Part-based object models and inference

This section describes the part-based object models and

how we perform inference using them (the learning is de-

scribed in the next section). Each object O will have several

different models indexed by τ = 1, . . . , TO. In multi-view

recognition tasks, these models typically correspond to dif-

ferent views of the object. The number of these models is

unknown and will be learnt automatically.

3.1. The Object Models

An Object O will be represented by a set (e.g. a mix-

ture) of models P (W|O, τ), where τ indexes the mixture

component and W denotes the state variables defined be-

low. For notational simplicity we ignore the indices O and

τ in Section 3.1 and reintroduce them in Section 3.2. Each

part-based model is a graphical model with state variables

W = {wi : i = 1, ...,MO}, where wi = (ri, θi, fi) rep-

resents the position ri, the orientation θi, and the feature

properties fi of the ith part. The feature properties can be

decomposed into f = (fw, fh) where fw and fh describe

the width and height of a HOG-bundle. Figure 2 visual-

izes these terms for an example bundle and also represents

an example graphical model for the object. Our graphical

model is similar to the 2-fan model of Crandall et al. [3] but

as described in Section 4, our learning and inference proce-

dures are quite different since we learn the graph structure

and the number of models as well.

Probabilistic modeling of these part-based models re-

quires the specification of a prior distribution on them and

also a likelihood function. The prior probability is of form,

see Figure 2 (right):

P (W|Λ) = P (w1)P (w2|w1,λ2)

MO∏

i=3

P (wi|w1,w2,λi),

(1)

where the model parameters Λ = (λ2, ...,λMO
), and the

number of parts MO will be learnt from the data, as de-

scribed in Section 4. The form of the model enables effi-

cient inference, invariant to scale and in-plane rotation, as

discussed in Section 3.2.

We specify the probability distributions of Equation 1 as

follows. First, we define a coordinate change (ri − r1) =
ri(cosφi, sinφi) in radial coordinates based on the posi-

tion r1 of the first part (the first reference part). We define

P (w1) to be the uniform distribution U(w1). We also as-

sume that the spatial and feature terms are independent:

P (wi|w1,w2) = P (fi|fh1)P (φi|φ1)P (θi|φ1)P (ri|r1, r2)

P (w2|w1) = P (f2|fh1)P (φ2|φ1)P (θ2|θ1)P (r2|r1),
(2)

where fh1 represents the height of the bundle correspond-

ing to the first reference part. It should be noted that the

two reference parts are chosen by the learning algorithm

automatically.

We specify these distributions in terms of Gaussian and

uniform distributions, using the notation that N (µ, σ2) is a

Gaussian distribution with mean µ and variance σ2. These

distributions are chosen to ensure invariance to the scale of

the features, the orientation of the object, and the scale of

the object (features sizes and orientations are defined rela-

tive to those of the first part, and the relative positions are

scaled by the distances between the first two parts).

P (fi|fh1) = N (fh1µ
f

i , f
2

h1σ
2

f ), P (φi|φ1) = N (µφ
i + φ1, σ

2

φ),

P (θi|φ1) = N (µθ
i + φ1, σ

2

θ), P (ri|r1, r2) = N (r2µ
r
i , r

2

2
σ2

r),

P (r2|r1) = U(r2). (3)



The model parameters are the mean feature properties and

angles {(µf
i , µ

φ
i , µ

θ
i ) : i = 2, ...,MO} and positions {µr

i :
i = 3, ...,MO}. These are learnt from the training data.

There are an additional four parameters which are fixed

σ2

f
, σ2

φ, σ
2

θ , σ
2

r (which will be learnt in future work).

The likelihood function assumes that the HOG-bundles

{zi : i = 1, ..., N} in the image are generated either from

the object model P (I|W), or from a background model

PB(z) which generates HOG-bundles independently. There

is a default background model which assumes that PB(I) =∏N
i=1

PB(zi), i.e. each HOG-bundle is generated indepen-

dently by PB(.), where N is the number of HOG-bundles

in the image. We define P (I|W) =
∏MO

i=1
δ(zi,wi), where

δ(z,w) = 1 if z = w, and equal to zero otherwise i.e. the

HOG-bundles generated by the object model have the same

size, positions, and orientations as the state variables w of

the object parts. For simplicity we set PB(.) = U(.) the

uniform distribution. Hence the likelihood function for an

image assumes that:

zi :i = 1, ...,MO sampled from P (I|W)P (W)

zi :i = MO + 1, ..., N sampled from PB(z). (4)

3.2. Inference

The inference task determines if there is an object in the

image and, if so, where it is. Recall that each object O

can have several different part-based models indexed by τ .

These are expressed as P (W|O, τ), which is of the form

given by Equation 1 with parameters ΛO,τ which depend on

the object O and the object model τ . All part-based models

for the same object have the same number of parts and the

likelihood functions are the same for all part-based models.

There are two types of inference tasks. Firstly, to find

whether the image contains an object, and if so, to deter-

mine the object and type. Secondly, to determine where the

object is in the image, i.e. to determine its configuration W.

Detecting the optimal configuration for each object and

type O, τ requires solving:

ŴO,τ = argmax
W

P (I|W)P (W|O, τ). (5)

The form of the likelihood term (4) means that the state

variables {wi : i = 1, ...,MO} can only take values

{zi : i = 1, ..., N} from the HOG-bundles computed from

the image. The form of the part-based models in Equa-

tion 1, means that we can express Equation 5 as minimizing

a function of form E(w1,w2) + E(w1,w2,w3) + ... +
E(w1,w2,wMO

). E(.) is the negative logarithm of the

probability, and so is a sum of quadratic terms if the dis-

tributions are Gaussian.

Inference can be performed in polynomial time using dy-

namic programming (DP). Our models are graphical mod-

els with a limited number of closed loops and so DP can

be applied using a variant of the junction trees algorithm.

Inference starts by evaluating all combinations for the first

two (reference) parts. Because of the form of the poten-

tial terms, DP is very efficient for the remaining parts.

For example, to find the fourth part, for each configuration

(w1,w2) of the two reference parts, we need to find only

w4 minimizing E(w1,w2,w4), which involves simple cal-

culations. This enables us to rapidly find the lowest energy

configurations of each model. Candidate object configura-

tions are the ones whose overall energy is below a threshold.

We perform model selection to determine which object,

if any, is present in the image, and its type. The object and

its type (Oi, τi) are calculated such that:

P (I|ŴO,τ )P (ŴO,τ |O, τ) >
∏

i

PB(zi), (6)

Strictly speaking, model selection should sum over all pos-

sible configurations of the models but, in practice, the loca-

tions are strongly peaked so we replace the sum by the dom-

inant term. In this paper, PB(.) is a constant so this model

selection reduces to keeping model configurations for which

the probability P (I|W)P (W|O, τ) lies above a threshold.

For each image, this gives a set of n models

and types (Oi, τi) together with their configurations

ŴO1,τ1 , ...,ŴOn,τn . These denote possible classifications

of the object and possible detection locations for it (if

n = 0, then no object is detected). These candidate models

and configurations are then combined with the results of the

appearance-based model, as described in Section 5. Note

that the part-based models described here need to be sup-

plemented by the additional appearance cues specified by

the appearance-based models.

Our inference is robust against occlusions to some ex-

tent. For example, if a model has 8 parts and 6 parts are

detected with low partial energy we report this as a detec-

tion of the object (despite the two missing parts). Alter-

natively, we could explicitly incorporate occlusion into our

likelihood term similar to Fergus et al.’s [8].

4. Compositional Learning

The learning algorithm involves estimating the unknown

(hidden) variables of the problem, namely, MO (number of

parts), TO (number of models/viewpoints), the correspon-

dence between the features z and the variables w, and ΛO,τ

(the parameters of the model). Our situation is more com-

plex compared to the approaches that assume MO and TO

are known and can apply the standard EM (e.g. [4]). Due

to the complexity of the problem, EM will not work for our

case, hence, we propose a novel compositional learning al-

gorithm to tackle the problem.

Our strategy is to build models by searching through the

space of possible models and applying a set of composition



Figure 3. The compositional learning proceeds by adding an ex-

tra node to the model and estimating the parameters for the newly

added part. λ
τi

i
denotes the parameters corresponding to the ith

part of the τ th

i model. An example model that cannot be expanded,

because it fails model selection or is pruned by the frequency cri-

teria, is shown by the red cross.

rules to a root model. These compositional rules take n-part

models and add an extra part to form n + 1-part models.

Model selection is used to check that the new models give

better descriptions of the data. The procedure terminates

automatically when this is not the case. This can be thought

of as a breadth-first search over the space of all object mod-

els. This procedure is done for each object separately so

we ignore the object label O, keeping only the type τ . The

procedure is shown in Figure 3. The idea of learning us-

ing compositions is similar to [24] but they use a depth-first

greedy search strategy.

The input is a set of images indexed by t where each im-

age is represented by its HOG-bundles {zti : i = 1, ..., Nt}.

We assume a default distribution for the images is specified

by the background distribution: PB(I
t) =

∏Nt

i=1
PB(z

t
i).

We first construct probability distributions defined for

two-parts of form P (w1,w2|λ
τ2
2
), where τ2 indexes these

models. The parameters λ2 are determined by a clustering

algorithm, described later in this section, which ensures that

these models provide a better fit to the data. In a sufficient

fraction η of images, this two-part model is matched (by

the inference algorithm) to HOG-bundles zti, z
t
j . The model

selection requires that the two-part model, filling in the re-

maining features by the background model, gives a better fit

than the pure background model – i.e.:

P (ztj |z
t
i,λ

τ2
2
)
∏

k 6=j

PB(z
t
k) >

∏

i

PB(z
t
i).

P (ztj |z
t
i,λ

τ2
2
) > PB(z

t
j). (7)

This requirement gives us a family of two-part models

indexed by τ2 each of which is better for describing a suffi-

cient fraction η of the images (as described in Equation 7)

than the pure background model. We store these models and

then grow them by adding extra parts. Each n−1 part model

is specified by a set of parameters λτ2
2
, ...,λ

τn−1

n−1
and can

be extended to an n-part model by specifying new param-

eters λτn
n , which determine the probability P (wn|w1,w2)

for the state of the nth part in relation to the states of the first

two parts w1,w2. We extend the model selection criterion

from Equation 7 in the natural way to obtain the require-

ment that P (ztn|z
t
i, z

t
j ,λ

τn
n ) > PB(z

t
n) for a sufficient frac-

tion η of images. Or in other words, the requirement that the

n-part model gives a better description of a sufficient frac-

tion of the images than the previous n − 1-part model. We

repeat until we fail to generate models with more parts. The

learning procedure also stops in the case that at least one

of the training images is not described by the newly cre-

ated models. It should be noted that each n-part model is a

child of an n−1-part model, and by construction the n-part

model describes the data better than its parent (but does not

necessarily give a better description than other n − 1 part

models).

Several grouping criteria can be used to estimate the pa-

rameters λ. Equation 7 cannot be applied directly. There-

fore, we have experimented with two clustering methods,

the DBSCAN [6] and Affinity Propagation algorithms [11],

which give roughly equal success and neither of them re-

quires a pre-determined number of clusters. For example,

DBSCAN performs a sequential search in feature space us-

ing clustering procedures equivalent to thresholding the left

hand side of Equation 7 (provided they are Gaussian with

fixed variance). The λ parameters correspond to the mean

and variance of the clusters. After performing clustering,

we can evaluate model selection in a validation step. The

reported results in the experiments section are based on the

Affinity Propagation method.

The learning procedure results in a set of part-based

models for each object indexed by τ . For objects viewed

from different viewpoints this includes models capturing

each viewpoint. We prune the set of models based on two

additional criteria: (i) remove those whose bounding box

are significantly smaller than the bounding boxes of the

training data, and (ii) eliminate those models which occur

least frequently in the training images.

5. The appearance-based model

The part-based model described in Sections 3 and 4 is

limited because it only uses appearance cues that can be rep-

resented by HOG-bundles. These correspond to dominant

edges of the objects and, sometimes, regions with uniform

gradients. Hence the models are generally poor at dealing

with regional appearance cues.

In this section, we augment the part-based model with

additional cues which are sensitive to regional properties

of the objects. This corresponds to supplementing the

HOG-bundles with the additional PHOW features, so that

I = ({zi}, Ph(r)) where Ph(r) are the PHOW features

(refer to Section 2). This introduces a new appearance



Figure 4. One of the learned models for each category of the ETHZ dataset is shown. The rectangles represent the HOG bundles and the

line shows the dominant orientation of the HOG bundle. The number of parts and their relative position and orientation is determined by

the learning procedure.

variable wA for the model, which corresponds to the re-

gion occupied by the object. In addition, we add a new

likelihood term, which couples the appearance variable to

the histograms of PHOWs H(Ph(.)) computed in the cor-

responding image region:

P (H(Ph(.))|wA, O, τ) =
1

Z
e
−min

a
M(H(Ph(.)),HO,τ

a )
.

(8)

where M(., .) is a measure of similarity between the his-

togram H(Ph(.)) computed in the image region wA and the

histogram of one of several ‘prototype histograms’ HO,τ
a

indexed by a for object and type O, τ . These prototypes

are the histograms of the regions in the training images sur-

rounded by object bounding boxes. The model chooses the

nearest prototype using the min operation. We assume a

default distribution P (H(Ph(.)) to be uniform in regions

where the object is not present. In this paper, we specify

wA(W) to be a deterministic function, e.g. bounding box,

of the state variables W estimated from the part model.

During inference, we estimate ŴO,τ for each object

type O, τ by Equation 5. Then we compute wA(ŴO,τ )
to obtain the position of the bounding box, followed by

computing the overall fitness score for the object type by

combining the contributions from the parts model and the

appearance model.

This procedure for combining the appearance-model

with the part-model is suboptimal: (i) the generative model

is hand specified and not learnt from the data, (ii) the ap-

pearance variable wA is a deterministic function of the part-

based variables W but its relationship to them should be

learnt, (iii) inference should estimate W and wA together,

instead of estimating W from the parts model and then

computing wA, (iv) when combining the part and the ap-

pearance cues we should compute the normalization term.

Nevertheless, we obtain reasonable results using our cur-

rent procedure. A method that addresses these issues (fol-

lowing [2], for e.g.) would presumably perform even better,

and will be developed in future work.

6. Implementation and Results

In order to validate our method, we learned object mod-

els for the categories of the ETHZ dataset [10] and the IN-

RIA horses [9]. Additionally, to show the performance of

our method for 3D multi-view recognition, we applied our

learning method to a multi-view car dataset [18], where the

viewpoint labels were unknown to the learning method. Af-

ter learning, the inference is performed in two stages. First,

a set of candidate part configurations are obtained by thresh-

olding the distributions of the part-based models (Equations

5 and 6). Then, we score each candidate bounding box with

the appearance-based model (Equation 8). We plot the re-

sult curves by varying a threshold over these scores.

Initially, we show the performance of the method on sin-

gle view datasets and then we show how the same learning

procedure can be adopted to learn models for different 3D

viewpoints of objects. ETHZ dataset consists of five ob-

ject categories: Apple logos, Bottles, Giraffes, Mugs and

Swans (255 images in total). The evaluation protocol for

the ETHZ dataset is as follows. Half of the images of one

category are used for learning and the other half and all of

the images of the other categories are used for testing. Our

part-based models are learned using only 6 training images.

The appearance-based models use half of the images of one

category (including those six used for part learning). We

could use half of the training images for learning the part-

based models as well but the learning becomes inefficient as

the number of compositions of HOG-bundles grows. We do

not use any negative examples and the reported results are

obtained from 5 trials of random selection of training im-

ages. We also pruned the models that appeared in less than

two-third of the training images (the parameter η in Section

4). One of the learned models for the ETHZ categories is

shown in Figure 4.

We have compared our inference results quantitatively

with the results of some of the recent methods [9, 10, 21, 16]

in Figure 6. Also, we compare our results with the result of



Figure 5. (Better viewed if zoomed in) Parsing and detection results of our inference method. Parts of the objects are shown with different

colors. The number of detected parts are not necessarily the same as the number of parts in the full models. We have zoomed in the apple

and swan inference images for better quality but the inference was performed on the full size image.

Felzenszwalb et al.’s code [7], which is obtained by [16].

Detection Rate versus False Positive per Image (FPPI) is

used as the evaluation criteria. Our result is close to the oth-

ers and we obtain the state-of-the-art results on Giraffe and

Horse categories at 0.3/0.4 FPPI. The state-of-the-art for the

horse category at 1.0 FPPI is obtained by [19] but their re-

sult is much worse than ours in the low FPPI regions. It

should be noted that the dataset is small and an error in one

image results in a significant drop in the curves. The reason

that our method does not perform well on Mugs and Bottles

categories is that their part-based models are usually rect-

angular and the rectangular structures are common in man-

made environments. Also, the appearance-based model is

not strong since the textures on the mugs and bottle labels

vary greatly. Some examples of bounding box detection and

object parsing are shown in Figure 5.

We now describe the multi-view recognition result that

is obtained by learning multiple 2D models to describe dif-

ferent 3D viewpoints. The models are learned jointly and

the viewpoint labels of the training images are not provided

to the learning method. We provided our learning method

with images of cars used by [18] which include images of 8

viewing angles, 3 scales, and 2 heights. Similar to [18] and

[12], we use the first 5 instances for training (240 images,

24 of which were used for the part-based model), and the

remaining 5 for testing (240 images). Unlike [18] which

does not use the smallest scale, we perform the detection

task on all of the scales. Our method outperforms [18] and

[12] that use 3D cues in addition to the 2D cues. The state-

of-the-art for this dataset is obtained by [17] but it is not fair

to compare their method with ours as they use an approach

based on 3D CAD models, which is highly specialized and

is not purely image based. Their reported average preci-

sion is 89.9%. Our result together with two of the learned

models representing two different viewpoints are shown in

Figure 7. The η parameter for this experiment is 0.125.

Our method is not too sensitive to the scale of HOG cells

and we only used 6× 6 windows to compute the HOG fea-

tures in all of our experiments. Our inference takes about a

second on average for 10 models with 6 parts on a 200×150
image on a desktop with a 2.66 GHz CPU. So our method is

faster than the state-of-the-art method on the ETHZ dataset

([16]) that takes about a few minutes for each image.

7. Conclusion

We proposed a novel approach for learning part-based

models of objects. We also introduced HOG-Bundles as a

novel representation for object parts and used them as the

building blocks of our part-based model. The advantage of

using HOG-bundles is that they are robust against local de-

formations of objects, and each image contains only a small

number of them. We augmented our part-based models by a

global appearance model based on PHOW features to model

the regional properties of objects. The obtained results us-

ing these models are superior or close to the state-of-the-art

even though we do not use any negative examples.

Our learning method learns the structure of the graphical

model and its parameters simultaneously. The reason for

estimating the number of object models and the number of

parts from the training data is to provide a better description

for intra-class variability and the changes in the viewpoint.

The standard EM algorithm seems impractical in this situ-

ation, where the number of graph nodes and the number of

models are hidden variables as well.

Our learning method is invariant to scale and in-plane

rotations but to capture general 3D rotations, we need to

provide enough training images of different viewpoints. We

performed our experiments in a supervised setting, where

we knew the object bounding box and object label during

learning. However, by applying our method on a multi-view

car dataset, we showed that the labeling constraint can be

relaxed, and also the variation in the 3D viewpoint can be

modeled by a set of 2D models.
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Figure 6. Quantitative comparison of our results with [16], [21],[7],

[10] and [9]. The PASCAL criterion is used for the evaluation. Detec-

tion Rate versus False Positives per Image (FPPI) is shown. Unlike the

other approaches, we do not use negative examples.
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Figure 7. The curves show the result of our method (black line)

compared to [12] and [18] in terms of precision-recall. Two of

the automatically learned models representing two different view-

points are also shown.
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