
Augmenting Deformable Part Models with Irregular-shaped Object Patches

Roozbeh Mottaghi
University of California, Los Angeles

roozbehm@cs.ucla.edu

Abstract

The performance of part-based object detectors gener-
ally degrades for highly flexible objects. The limited topo-
logical structure of models and pre-specified part shapes
are two main factors preventing these detectors from fully
capturing large deformations. To better capture the defor-
mations, we propose a novel approach to integrate the de-
tections from a family of part-based detectors with patches
of objects that have irregular shape. This integration is for-
mulated as MAP inference in a Conditional Random Field
(CRF). The energy function defined over the CRF takes into
account the information provided by an object patch classi-
fier and the object detector, and the goal is to augment the
partial detections with missing patches, and also to refine
the detections that include background clutter.

The proposed method is evaluated on the object detection
task of PASCAL VOC. Our experimental results show signif-
icant improvement over a base part-based detector (which
is among the current state-of-the-art methods) especially
for the deformable object classes.

1. Introduction

Part-based object detectors have shown remarkable per-
formance in recent years [1, 2, 3, 5, 6, 7, 21, 25]. Among
them, the Deformable Part Model (DPM) by Felzenszwalb
et al. [5] and its variants such as [2] and [25] demonstrate
the state-of-the-art performance on difficult object detection
benchmarks. However, there are several limiting factors
that prevent these types of part-based detectors from achiev-
ing the ideal performance. A major challenge is to define
a topological structure for the object model. The structure
should be flexible enough to capture the deformations of ob-
jects. On the other hand, learning and inference should be
performed efficiently on these models, which often restricts
the flexibility of the structure. Although impressive results
are achieved using star structures [5] or hierarchies of de-
formable parts [25], these structures are not flexible enough
to reliably capture variations in highly deformable objects
such as cats or plants.

Additionally, specifying parts as rectangular blocks in
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Figure 1. The Deformable Part Models (DPMs) are often unable
to capture large deformations of objects. For example, the learned
models for cats usually correspond to the cat head, which is a
rigid part. As illustrated in the top-right image, the detections
are concentrated on the head (the visibility is encoded by the
value obtained by accumulating the score of detections over each
pixel). Our goal is to append the missing HOG-bundles shown in
the bottom-left panel (and remove the background HOG-bundles)
through a CRF framework to better estimate the object location.
Grabcut was applied on this picture to generate smooth bound-
aries. Grabcut is not used for the final evaluations.

DPMs imposes even more restriction on modeling the flex-
ibility of objects. Rectangular blocks of features have been
used as a common representation for parts in object detec-
tors (e.g., [1, 3]). Although rectangular blocks capture the
shape or context around the parts, they might not be the
most appropriate choice for capturing object masks or part
deformations.

In this paper, we aim to improve the family of De-
formable Part Models ([5] and its variants) to better capture
large deformations. Hence, we develop a framework to inte-
grate the detections of DPMs with patches of irregular shape
(HOG-bundles). The contribution of this paper is two-fold.
First, we extend the idea of HOG-bundles [18] that are a
representation for object parts. HOG-bundles are formed by
unsupervised grouping of HOG cells, and approximated as
rectangular blocks in [18]. The only properties used by [18]
for describing bundles are width and height, which do not
carry much information, especially for bundles with irreg-
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Figure 2. Examples of HOG-bundles. From top-left to bottom-
right: horse tail, bicycle frame, sky, bus door, lips, bike wheel,
cat whiskers, airplane windows, bird feather, license plate, car tail
lights, and cat fur.

ular shape. We propose a set of descriptors for the bundles
so we recognize the object category they belong to. There
are advantages in using HOG-bundles in our framework: (i)
they have irregular shape allowing better representation of
the subparts of highly deformable objects, (ii) they are com-
puted efficiently (less than 0.5s per image on a CPU), (iii)
there are only a few hundred of them in each image. Exam-
ple HOG-bundles are shown in Fig. 2.

The second contribution of this paper is formulating the
problem of augmenting the detections of Deformable Part
Models with HOG-bundles as the MAP estimation of a
multi-label CRF. The goal is to find the labeling that mini-
mizes a defined energy function, where the node label spec-
ifies to which object of the scene a pixel belongs. As a re-
sult, our method extends the detections with missing parts,
shrinks the detections that include background clutter, and
increases the confidence of the detections with low confi-
dence (caused by partial occlusion or unusual pose). Fig. 1
shows an example, where the DPM is unable to detect the
cat due to deformations, and the detections are concentrated
on the head of the cat, which is a rigid part. Our approach
distinguishes all regions corresponding to the cat by aug-
menting the detections with the missing object patches and
eliminating the background clutter.
Related work. A number of methods have been proposed
to overcome the deficiencies of DPMs in modeling the flex-
ibility of objects. For example, Girshick et al. [9] have pro-
posed a method based on object grammars to allow more
flexibility in describing objects. Their current result is lim-
ited only to people detection. Schnitzspan et al. [21] de-
scribe a method for automatic discovery of parts and their
topological structure, but their results do not compare favor-
ably with the results of the current state-of-the-art DPMs.
Parkhi et al. [19] improve the detection of cats and dogs

by training a DPM for a distinctive part (head detector) and
extending the detected regions using color cues. The ad-
vantage of our method to theirs is that we do not require a
distinctive part detector. Also, our method generalizes to
other categories as we do not rely on color cues only.

Several works, for example [10, 15, 17] to mention a few,
have used CRFs with or without object detection priors to
address the problem of object class segmentation. These
approaches specify the object class that a pixel belongs to
but they cannot determine how many instances of an object
category are present.

OBJ CUT, proposed by Kumar et al. [14], com-
bines CRFs with Pictorial Structures to solve a joint
segmentation-detection problem. LayoutCRF [24] ad-
dresses the problem of detecting and segmenting partially
occluded objects using CRFs. These approaches have not
been applied to highly articulated objects and they have not
been designed to handle viewpoint and scale changes.

The method of Gould et al. [11] integrates multi-class
segmentation with object detection using a region-based ap-
proach. Work by Ladicky et al. [16] proposes another CRF-
based framework for estimating the class category, location,
and segmentation of objects in a scene. The goal of these
methods is different from ours as they find a labeling for
scene contents while we try to improve object detectors.
Therefore, they have not provided results on challenging
object detection datasets.

2. HOG-bundle Description and Classification
Our goal in this section is to develop a binary classifier

to distinguish the HOG-bundles of a certain object category
from the others. HOG-bundles are formed by unsupervised
grouping of neighboring HOG cells that have similar fea-
tures and dominant orientations. Each HOG-bundle has
been described by its height and width in [18], which is not
adequate for this classification task. Therefore, we propose
a set of descriptors for HOG-bundles and use them as inputs
to the classifiers. In addition to SIFT and color, we propose
two other descriptors more specific to HOG-bundles.

2.1. HOG-bundle Descriptors

Gradient Descriptor: is defined based on the his-
tograms of the gradients of pixels in four regions of a HOG-
bundle. This descriptor is somewhat similar to SIFT, where
the main difference is that the pixels that do not belong to
the bundle are not used in building the histograms. Also, the
gradient histograms are computed over irregular-shaped re-
gions instead of rectangular patches. A gradient orientation
histogram is built for each region separately, where each bin
represents the sum of the magnitude of the gradients whose
orientation corresponds to that bin. The regions intersect
at the center of the bundle and are rotated according to the
dominant orientation of the HOG-bundle (see Fig. 3(a)). As
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Figure 3. (a) Regions used for computing the gradient descriptor.
The regions are rotated according to the bundle dominant orien-
tation. (b) Line segments used for computing the jaggedness de-
scriptor. The start and end of each segment are represented by the
same color. (c) Intensity profiles of a car and a cat bundle com-
puted over the yellow line. The profile is almost periodic with
small changes for a cat bundle, while there are sharp peaks in the
profile of a car bundle.

in [18], the dominant orientation of a HOG-bundle is de-
fined as the mean of the orientations with maximum magni-
tude in the constituent HOG cells.

The gradient descriptor g is constructed by concatena-
tion of the vectors 1

|R1|g1 through 1
|R4|g4, where gi is the

histogram corresponding to region Ri and |Ri| is the num-
ber of pixels that belong to region Ri. We quantize the ori-
entations into 18 bins so this descriptor has 72 = 4 × 18
dimensions.

SIFT Descriptor: is defined based on the histogram of
SIFT features computed over the bundles. First, a vocab-
ulary of 4096 SIFT words corresponding to four different
SIFT scales is generated (1024 words for each scale) using
the standard K-means clustering. Then, for each cell of a
bundle, the SIFT descriptor is computed at four scales (8×8,
12× 12, 16× 16, 20× 20 patches). Using the Soft-binning
technique [20], we find a 4096 dimensional histogram for
each cell. We accumulate all of the histograms correspond-
ing to different cells by summing over the corresponding
bins and normalizing them according to the number of the
HOG cells in a HOG-bundle. It should be noted that the
patch for the SIFT descriptors is centered at the center of
the HOG cells. We denote the SIFT descriptor by s.

Jaggedness Descriptor: provides a rough estimate for
the changes of intensity over a HOG-bundle. For exam-
ple, as shown in Fig. 3(c), a cat fur bundle is usually com-
posed of parallel lines, and the intensity over the bundle
changes smoothly and almost periodically, while there is a
sharp peak in bundles that correspond to edges of car parts.

To compute the descriptor, we consider 8 line segments

over a HOG-bundle, 4 in the direction of the dominant
orientation, and 4 in the perpendicular direction. All of the
line segments are centered around the bundle center, and
their length is w/4, w/2, 3w/4, and w for the segments
along the width of the bundle and h/4, h/2, 3h/4, and h
for the segments along the height of the bundle. Fig. 3(b)
shows the line segments for an example bundle. If p and
q are neighboring pixels along a line segment where p
precedes q and both of them belong to the HOG-bundle, the
feature vector for the ith line segment, ji, is defined as: ji =
1
Li

[∑
p:Ip>Iq

∇Ipq,
∑

p:Ip<Iq
∇Iqp,

∑
p:Ip=Iq

1(Ip = Iq)
]
,

where ∇Ipq = Ip − Iq , and Ip and Iq are the intensities of
pixels p and q, respectively. Li is the number of pixels of
segment i that belong to the bundle, and 1(.) is the indicator
function. The first two components are intensity differences
while the third component is a normalized count. We leave
it to the classifier to find the proper weights for combining
these different quantities. Since we have 8 line segments,
the bundle descriptor, j = [j1, . . . , j8], has 24 dimensions.

Color Descriptor: is the normalized color histogram of
pixels of a bundle. We use HSV color space and compute a
histogram with 16 bins for each channel. The color descrip-
tor, c, is defined by the concatenation of the histograms for
each channel and has 48 = 3 × 16 dimensions. The his-
tograms are normalized by the number of pixels in a bundle.

2.2. Feature Combination

One of the unary terms of our CRF formulation in Sec-
tion 3.1 is the likelihood of a HOG-bundle being part of a
certain object category. This likelihood can be computed
by a classifier. Our goal in this section is to classify HOG-
bundles according to the descriptors mentioned previously.
For this purpose, we develop a two-stage binary SVM clas-
sifier to combine our features.

In the first stage, we learn a binary SVM classifier with
RBF kernel for each descriptor separately (for the SIFT de-
scriptor we use a linear kernel due to its high dimension-
ality). As the result, we learn the parameters {αd

i , b
d} that

are used in the SVM discriminant function for bundle z:
o(zd) =

∑
vd
i ∈S

αd
i yiK(zd,vd

i ) + bd, where zd is one of
the bundle descriptors (d indexes the descriptors g, s, j, and
c defined above), and vd

i is a member of the support vectors
set S. The bundle label yi is binary-valued and determines
if the bundle belongs to a certain category or not. Also, the

kernel is defined asK(z(.),v
(.)
i ) = exp(−γ

∥∥∥z(.) − v
(.)
i

∥∥∥2)

for the Gradient, Jaggedness, and Color descriptors, and a
linear kernel is used for the SIFT descriptor K(zs,vs

i ) =
(zs)Tvs

i .
To combine the features, we use a linear SVM classifier

that uses the output of the first stage as its input. Our ap-
proach is similar to [8] with the difference that we use a
binary linear SVM classifier in the second stage instead of



their LP-B method. As the result of the first stage of classi-
fication, we obtain four real valued functions, o(zg), o(zs),
o(zj), and o(zc), corresponding to the four different fea-
tures we defined. The linear SVM classifier in the second
stage finds the discriminant hyperplane parametrized by βd
and c: O(z) =

∑
d∈{g,s,j,c} βdo(z

d) + c. Therefore, a real
value is assigned to each bundle z in an image. The positive
training examples for these classifiers are the bundles com-
pletely contained inside the bounding boxes of a particular
category in the training images. The rest of the bundles are
considered as negative.

3. Integration of Deformable Part Models with
HOG-bundles

Our object detection framework fits into the paradigm of
image labeling, where the labels correspond to object in-
stances or background. In this section, we explain the Con-
ditional Random Field (CRF) model that we use to integrate
the information provided by the Deformable Part Models
and HOG-bundles.

Our CRF model has a random variable for each im-
age pixel, where the variables take a value from a dis-
crete set of labels L = {l0, l1, . . . , lM}. l0 corresponds
to the background and M denotes the number of objects
of a particular class in the image (l1 = car1 and l2 =
car2, for instance). We define a Gibbs distribution for
the posterior pixel labeling x given an observed image I:
P (x|I) = 1

Z exp{−E(x)}, where Z is the partition func-
tion and E(x) is the energy function. To determine the
most probable assignment of pixels to objects, we com-
pute the maximum-a-posteriori (MAP) estimate labeling,
x∗ = arg maxx P (x|I) = arg minxE(x). The energy
function is computed according to a set of unary and pair-
wise potential functions that we describe next.

3.1. Unary Terms

Superposition term (Ps). This term is defined based on
the detections from a DPM and measures the likelihood of
presence of an object of the category of interest at a certain
location in an image. The discriminant function for region
X with root part p1 (see [2] for instance for further details)
is defined as:

F (X ,p1) = max
p

w.Φ(X ,p), (1)

where w represents the learned parameters, and Φ(., .) is a
vector of shape and appearance features defined over region
X and parts p. The set of detections, D, is defined as: D =
{X : F (X ,p1) > 0}.

Since a DPM is usually not able to capture large defor-
mations, it generates multiple imperfect detections corre-
sponding to the deformed object. The idea here is that we
superimpose all of the detections to obtain a more robust

estimate for the location of objects. Let xi denote the label
for the ith node (pixel). The foreground likelihood function
is written as:

Ps(xi 6= l0|D) =
1

C

∑
X∈D

s.t.:i∈X

F (X ,p1), (2)

where by i ∈ X , we mean X includes the pixel that cor-
responds to node i. Also, C is a normalizing constant that
is equal to the maximum superposition value that we obtain
from the images of the category of interest in the validation
dataset. The definition of this term is along the lines of the
voting strategies used for object detection (e.g., [4]).

It should be noted that we do not prune out the detections
in D by non-maximal suppression or any other heuristics at
this stage. Pruning the overlapping detections discards the
information that the superposition term relies on. Column
(c) of Fig. 7 visualizes this term for some example images.
HOG-bundle term (Ph). This term corresponds to the out-
put of the HOG-bundle classifier (O) that we defined in
Section 2.2. We use a logistic function to convert the real-
valued predictions to probabilities. So we obtain the prob-
ability of a HOG-bundle belonging to a particular object
category. This probability is uniform across a bundle i.e.
the same probability is assigned to the constituent pixels of
a bundle. The HOG-bundle term is defined as:

Ph(xi 6= l0|z) = max
(
Ph(xi 6= l0|z+), Ph(xi 6= l0|z−)

)
,

(3)
where z = {z+, z−} is the set of HOG-bundles that cover
the ith node. According to [18], images have two sets
of overlapping HOG-bundles constructed according to two
different parts of the HOG feature vector. We refer to these
sets as positive and negative bundles. z+ and z− are mem-
bers of the positive and negative set, respectively. If a pixel
belongs to two overlapping bundles, the higher probability
is assigned to that pixel. This term is visualized in column
(b) of Fig. 7.

The Superposition and HOG-bundle terms are combined
linearly: Plm(xi) = ηPs(xi|D) + (1 − η)Ph(xi|z), where
η ∈ [0, 1]. We refer to this linear combination as the likeli-
hood map in the rest of the paper. Hence, the unary term of
the energy function, ψ(xi), is given by:

ψ(xi) =

{
Plm(xi) xi ∈ {l1, . . . , lM}
Pb xi = l0,

(4)

where Pb is an adaptive background likelihood that varies
for different images.

The procedure to compute the background likelihood
(Pb) is as follows. There are sharp discontinuities in the
likelihood map (Plm) at the object boundaries, where one
side of the discontinuity belongs to an object and the other
side belongs to the background. Our idea is to find the sharp
discontinuities and estimate the background likelihood from



the pixels around the discontinuities that potentially belong
to the background. The discontinuities can be found by
thresholding the magnitude of the difference of a pixel in
the likelihood map from its neighbors. We compute the dif-
ference map, |∇Plm|, by accumulating |∇tPlm|, |∇trPlm|,
|∇rPlm|, and |∇brPlm| corresponding to difference with
the top, top right, right, and bottom right neighbors, re-
spectively. The sharp discontinuities happen at pixels with
|∇Plm| greater than a threshold T (the values less than T
usually correspond to the internal discontinuities of an ob-
ject). For each pixel at a discontinuity, we find the neighbor-
ing pixel that has the minimum likelihood in the likelihood
map Plm. The background likelihood Pb for each image is
estimated as the median of the likelihood of these neighbor-
ing pixels with the lowest likelihood.

3.2. Pairwise Term

We define a pairwise potential function based on the
color histogram of HOG-bundles to represent the relation-
ship between the neighboring nodes. It is more robust to de-
fine this term based on the color difference of HOG-bundles
rather than the individual pixels. Since an internal edge of
an object and its surrounding region are usually included in
a single HOG-bundle, assigning two different labels to the
two sides of internal intensity or color discontinuities typi-
cally has a large penalty. The pairwise term φ(xi, xj , {zc})
for two neighbor nodes i and j is given by:

φ(xi, xj , {zc}) =

{
exp(−‖zc(i)− zc(j)‖ /κ) xi 6= xj

0 xi = xj ,

(5)
where zc(i) is the color histogram for the bundle that node
i belongs to (refer to Section 2.1 for the definition of this
color histogram) and ‖.‖ is the `2 norm. The parameter
κ is set to the average of the distances between the color
histogram of neighboring bundles. Note that the pixels that
belong to a single HOG-bundle have the same histogram,
and the changes happen only at the boundary pixels of each
HOG-bundle.

Recall that there are two sets of overlapping bundles in
each image. Therefore, a pairwise term is defined over each
set separately, and we denote them by φ+(xi, xj , {zc}) and
φ−(xi, xj , {zc}) corresponding to the positive and negative
bundles, respectively. The histogram differences are shown
for some example images in Fig. 4.

3.3. Object Detection

Our goal is to determine which pixels belong to the ob-
ject category of interest, and also to find the regions cor-
responding to the different instances of that category in
the image. To find the most probable labels, we mini-
mize an energy function that is computed according to the
unary and pairwise potentials we defined above. Given the

Figure 4. The color histogram difference of the positive and nega-
tive HOG-bundles. Darker lines represent sharper discontinuities.

random field defined over a standard 8-neighborhood grid
G = (V, E) with nodes V and edges E , the energy function
is defined as:

Es(x) = −
∑
i∈V

logψ(xi)+λ
∑

(i,j)∈E

φs(xi, xj , {zc}), (6)

where s ∈ {+,−} specifies whether the pairwise term cor-
responds to the positive bundles or negative bundles, and λ
is a weighting coefficient that is estimated empirically from
validation data. We could combine these two energy func-
tions corresponding to positive and negative bundles to a
single energy function but we obtain better results by de-
coupling these two terms. We find the MAP estimates x∗+
and x∗− corresponding to E+(x) and E−(x), respectively,
by the sequential tree-reweighted message passing (TRW-
S) [13]. The final labeling x∗ is computed as follows. If x∗+
and x∗− agree on a label for a node, that label is assigned to
that node. If they disagree, we assign the background label
(l0) to the node.

3.4. Multiple Instance Detection

So far we have treated all of the foreground objects sim-
ilarly. Now we explain how we distinguish multiple in-
stances of the object category of interest. We use the in-
formation from the bounding boxes generated by the DPM
for this purpose. The idea is to assign a label to a small
set of pixels in each bounding box, and then let the energy
minimization find the best labeling for the other pixels in
the image. We choose a small set of pixels from each box
since a bounding box might include background clutter that
should be removed. A fixed label is assigned to the pixels in
each bounding box whose value in the likelihood map (Plm)
is greater than a certain fraction f of the maximum value in
that box. Hence, the threshold varies for each box. We set f
to 0.7 in our experiments. We denote the nodes with a fixed
label by xk and find the MAP estimate conditioned on these
known pixels.

The procedure for assigning fixed labels is as follows.
First a non-maximal suppression similar to [5] is performed
to prune out the overlapping detections. Then, we start
from the top-scoring bounding box and assign label l1 to the



plane bike bird boat bottle bus car cat chair cow table dog horse motor person plant sheep sofa train tv

w/o Grad. 81.4 59.2 63.2 69.5 61.5 62.4 60.5 58.7 43.9 67.8 68.8 58.7 67.7 59.8 46.5 59.5 72.3 66.8 66.5 68.6
w/o SIFT 77.5 54.9 60.7 64.5 59.6 56.0 55.2 56.4 60.8 61.8 62.3 56.0 65.1 54.5 46.4 54.1 68.1 60.2 62.6 60.5
w/o Jagged. 82.1 60.3 64.7 70.0 61.6 62.3 60.6 59.5 44.0 68.3 69.5 58.9 68.7 59.8 46.7 59.8 72.6 66.7 67.4 69.1
w/o Color 81.5 59.3 61.6 68.2 61.4 62.2 60.6 59.2 55.3 68.8 67.1 58.9 64.7 59.9 46.9 59.0 72.5 65.8 66.4 69.8
all 82.5 60.6 64.8 70.4 61.6 62.3 60.6 59.9 44.9 69.3 69.8 58.9 69.5 59.8 47.6 60.5 73.4 67.8 68.1 69.9

Table 1. Classification results of the bundles of PASCAL VOC 2007 test dataset. The AUC of the classifier ROC curve is shown. Each
row shows the results where one of the features is excluded. The shown AUCs correspond to the average result of five different random
selections of the negative set during training.

4 1480
0

0.2

0.4

0.6

0.8

1

# of bundle cells

A
U

C

Figure 5. The effect of bun-
dle size on the classification of
Horse bundles.
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Figure 6. The effect of varying
η on the PR curve of Cat detec-
tion.

nodes inside the box that satisfy the above threshold criteria.
We continue by checking the second top-scoring detection
and assign label l2 to the nodes satisfying the criteria and
so on. Since the bounding boxes might overlap, we do not
change the label for a node that has already been assigned a
label.

We are interested in finding the most probable la-
beling for the nodes with unknown label xu con-
ditioned on the known labels xk (specified above):
x∗u = arg maxxu

P (xu|xk). Since P (xu|xk) =
P (xu,xk)/P (xk) and P (xk) is a constant and x = xk ∪
xu, we can write P (xu|xk) ∝ exp(−E(x)) (we have
dropped the positive and negative subscripts for simplicity
of the notation). Hence, the energy function is similar to the
previously defined energy, and the procedure for finding the
optimal labeling does not change.

For bounding box-based evaluation methods, we fit a
bounding box around all of the pixels with the same label
and output those bounding boxes as our new detections. So
there is a bounding box corresponding to each label. The
score of a detection is obtained by averaging the value of
the likelihood map over the pixels inside the bounding box
whose label is the same as the bounding box label. We also
add the score of the original detection from the DPM to the
computed score.

4. Experiments
We evaluate our method on the PASCAL VOC 2007 and

2010 datasets, which contain 20 object classes. The evalua-
tion details are described below.

4.1. Evaluation of HOG-Bundle Classification
First, we evaluate the discrimination power of the HOG-

bundle descriptors by learning bundle classifiers. The posi-
tive training examples are the bundles completely contained
inside the bounding boxes corresponding to a particular cat-

egory in train images of PASCAL 2007 dataset. The rest
of the bundles form the negative example set. Since the
number of negative examples exceeds the number of pos-
itive examples, we use a randomly sampled subset of the
negative set that has the same size as the positive set for
training. For testing, we use the test set of the dataset
that includes around 900K HOG-bundles.

Table 1 shows the area under the ROC curve (AUC) of
the classifiers for different combinations of features. Fig. 5
also shows for an example category that the AUC of the
final classifier becomes larger as the bundle size increases.
It confirms the intuition that it is difficult to recognize the
object category based on a small set of pixels.

4.2. Detection Results
To evaluate the performance of our method, we use the

DPM of the second winner of PASCAL Challenge 2010
(similar to [2], but excluding the shape masks) as our base
object detector. As we show later, our method is indepen-
dent of the base detector, and other DPMs can be used as
well. We prune out most of the irrelevant detections and
keep the ones whose score is greater than a certain fraction
of the score of the top-scoring detection in the correspond-
ing image. To estimate this fraction for each category, we
compute the ratio of the score of the correct detection with
the lowest score to the score of the top-scoring detection for
all of the validation images containing objects of the cate-
gory of interest. The fraction is estimated by averaging all
of these ratios. On average we keep the detections whose
score is above 50% of the score of the top detection in each
image. The number of foreground labels M in each image
(defined in the beginning of Section 3) is equal to the num-
ber of the remaining detections in that image.

Table 2 shows that our method provides significant im-
provement (up to 8.0%) over the base detector on PASCAL
2007 dataset, especially for the highly deformable classes
such as cat, bird, dog, plant, and also for diningtable that has
a highly variable appearance. We also show how the per-
formance changes when we use the superposition potential
only as our unary term. We combine the superposition and
HOG-bundle terms linearly but more sophisticated methods
can be used. Fig. 6 shows the effect of choosing different
weights for the linear combination on the detection of an
example category. We set η to 0.6 in all of our experiments.

We also provide comparisons to some of the state-of-the-
art methods [2, 5, 22, 23]. Unlike [5] and [22], we do not



plane bike bird boat bottle bus car cat chair cow table dog horse motor person plant sheep sofa train tv H. D. Avg.
Base Detector 33.5 54.8 12.3 15.6 29.3 51.4 52.8 31.2 21.8 25.4 34.9 18.1 52.9 43.6 40.2 17.5 22.3 31.9 42.7 44.2 28.3
SP only (ours) 30.5 51.7 18.3 11.1 25.4 38.7 53.9 33.8 19.8 22.9 40.1 21.1 41.7 41.6 26.5 13.1 18.9 33.9 44.5 45.4 26.3
SP + HB (ours) 34.5 55.7 18.6 17.9 28.4 53.1 52.9 39.2 22.1 26.7 41.0 24.3 55.8 47.3 38.7 21.1 23.9 34.0 47.3 46.0 32.1
gain +1.0 +0.9 +6.3 +2.3 -0.9 +1.7 +0.1 +8.0 +0.3 +1.3 +6.1 +6.2 +2.9 +3.7 -1.5 +3.6 +1.6 +2.1 +4.6 +1.8 +3.8

MKL [23] 37.6 47.8 15.3 15.3 21.9 50.7 50.6 30.0 17.3 33.0 22.5 21.5 51.2 45.5 23.3 12.4 23.9 28.5 45.3 48.5 25.9
UoCTTI [5] 31.2 61.5 11.9 17.4 27.0 49.1 59.6 23.1 23.0 26.3 24.9 12.9 60.1 51.0 43.2 13.4 18.8 36.2 49.1 43.0 26.1
Active Masks [2] 34.8 54.4 15.5 14.6 24.4 50.9 54.0 33.5 20.6 22.8 34.4 24.1 55.6 47.3 34.9 18.1 20.2 30.3 41.3 43.3 28.8
NUS-Context [22] 38.6 58.7 18.0 18.7 31.8 53.6 56.0 30.6 23.5 31.1 36.6 20.9 62.6 47.9 41.2 18.8 23.5 41.8 53.6 45.3 31.5

Table 2. Detection performance on PASCAL VOC 2007 test set. The evaluation metric is Average Precision (%). The colored columns
represent the highly deformable classes. “SP only” refers to the case that we use only the Superposition potential as our unary term.
“SP+HB” refers to the case that we use the combination of Superposition and HOG-bundle potentials. The row labeled by “gain” shows
the improvement of “SP+HB” over the “Base Detector”. The last column is the mean AP for the highly deformable classes.

plane bike bird boat bottle bus car cat chair cow table dog horse motor person plant sheep sofa train tv Avg.
Baseline [5] 17.3 35.2 7.1 8.2 21.4 49.3 38.9 22.9 9.9 9.2 12.7 10.5 16.0 26.8 31.9 14.0 10.8 13.4 25.2 27.1 20.4
Ours 21.7 47.3 8.9 15.0 30.9 59.9 40.6 32.4 10.5 18.2 10.9 19.01 16.2 38.2 32.1 15.7 17.2 31.5 32.4 41.8 27.0

Table 3. Detection performance on PASCAL VOC 2010. The evaluation metric is Average Precision obtained using the instance-based
pixel-wise scoring.

use contextual cues. Nevertheless, our method outperforms
these methods on highly deformable object classes (colored
columns in Table 2) in terms of mean AP. It should be noted
that our performance is dependent on the underlying detec-
tor. There are several cases that the HOG-bundle classifier
has a high response on the object but we cannot detect the
object because of no response from the base detector.

Fig. 7 shows the bounding boxes generated by the base
detector and our detections for some example images. For
the cat image, the base detector finds only the head since the
DPMs cannot reliably model the deformation of cats. Our
method extends the detection to include the whole body.
The dog image shows a case that the background clutter
is included in the detection since the base detector does
not have a reliable model for dog deformations either. Our
method shrinks the detection window to exclude the back-
ground clutter. Also, the base detector’s confidence is low
for the chair case (it can be observed in the superposition
image). We improve the confidence by incorporating the
information from the HOG-bundles.

Instance-based Pixel-wise Scoring: Our detection
method provides object masks in addition to the bounding
boxes and is able to specify the instance label for each pixel.
To justify these, we require a more accurate measure than
PASCAL’s that is based on the overlap only between bound-
ing boxes (not the object masks). The evaluation strategy
should also be more accurate than segmentation evaluation
methods that only consider the category label (not the ob-
ject instance label). Therefore, we propose a new evaluation
method. First, we sort the detections by their score. We start
from the top-scoring detection and find the groundtruth ob-
ject instance with the most overlap with the detection. Only
the detections with a score above a threshold contribute to
the overall precision and recall, which are computed based
on matched and unmatched pixels. Precision-recall curves
are obtained by varying this threshold 1.

1Refer to the supplementary material for more details.

Recently, [12] provided the pixel-wise instance labels for
PASCAL VOC detection dataset, which makes our evalua-
tion possible. Table 3 shows the average precisions obtained
by using the new evaluation method on PASCAL 2010 sub-
set of the dataset, which includes about 10,000 images. On
average, our method provides 6.6 gain over the baseline in
terms of AP. To show that our method is applicable to other
DPMs, we use [5] as our base for this experiment. It should
be noted that our learning is performed on PASCAL 2007
trainval set. In all of our experiments, we use only a
single scale of HOG features (8×8 cells) to construct HOG-
bundles.
5. Conclusion

We propose a novel approach to augment the detec-
tions of Deformable Part Models with patches of irregular
shape (HOG-bundles) to better capture the object masks.
We develop a CRF framework to find the most proba-
ble assignment of pixels to each object instance in im-
ages. Our method provides significant improvement over
the base DPMs on bounding box-based and mask-based
benchmarks.
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