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Abstract— One of the common applications for outdoor
robots is to follow a path in large scale unknown environ-
ments. This task is challenging due to the intensive memory
requirements to represent the map, uncertainties in the location
estimate of the robot and unknown terrain type and obstacles
on the way to the goal. We develop a novel graph-based path
planner that is based on only local perceptual information to
plan a path in such environments.

In order to extend the capabilities of the graph representa-
tion, we introduce Exploration Bias, which is a node attribute
that can implicitly encode obstacle features at immediate
surrounding of a node in the graph, the uncertainty of the
planner about a node location and also the frequency of visiting
a location. Through simulation experiments, we demonstrate

that the resulting path cost and distance that the robot traverses
to reach the goal location is not significantly different from those
of the previous approaches.

I. INTRODUCTION

In many real world, outdoor settings, the environment

contains a variety of features, which make the task of robot

navigation more difficult in some parts of the environment. If

we want to store the global information about the traversabil-

ity and the observed features of the environment, we will run

out of memory as the map that contains this information

grows rapidly due to the large number of features and

variations in the environment. Furthermore, in field robotics

applications, we usually require that the robot traverse a large

area, which requires us to store a large map of the region

and the map grows as the working area of the robot becomes

larger and also choosing the right size for the map resolution

depends on many factors in the environment. Therefore,

a sparse representation of the environment will reduce the

amount of the required memory.

A second challenge to tackle in the navigation of outdoor

robots is that in many cases, the robot should traverse an

unknown area and we cannot obtain the global map be-

forehand. Sometimes, even acquiring and building a detailed

global map on the fly is not feasible because of the various

sources of noise that we have in the environment. Therefore,

a method that can solve the navigation problem with local

information is desirable.

We usually face the problem of finding a path between

two distinct geographic locations for outdoor robots. There

is always a trade-off between the cost of the traversed path

and the time spent to reach a goal from a source location,

so finding an optimal strategy to reach the goal is not a

Fig. 1. The nodes and edges of an example graph have been shown on a
cost map. The cost map reflects obstacle and traversability information in
each cell. White and lighter green represent path and low cost areas. Darker
green represents traversable but high cost areas. Red represents obstacles or
walls. Unknown (unobserved) areas are shown in blue.

trivial task. Another factor that should be considered is

the planning time, which is the computation time that we

require to find the next waypoint location. In addition, having

partial knowledge of the environment and using only local

perception, will make the problems mentioned above even

more difficult. In this paper, we present a novel method for

path planning for outdoor robots in unknown environments.

Motivated by methods like [1] and [2], we use a graph-based

path planner to satisfy the sparsity requirement as opposed

to a grid-based planner. We develop a heuristic to plan a path

through unknown areas using only local information and we

show the strength of our method compared to some of the

existing planners.

Our method has advantages over the previously devel-

oped methods for path planning of outdoor robots. We

will mention a few related works that motivate our work

since describing all categories of the planners is impossible.

Latombe [3] represents a basic Wavefront planner. This

planner requires the full map of the environment but it is

very common that the outdoor robots should operate in an

unknown environment. [4], [5] and [6] represent three types

of grid-based planners. To use the grid-based (or graph of

connected grid cells) methods we should deal with the trade-

off between the accuracy of representation and the amount of

required memory space. Choosing the resolution of the grid



becomes an important issue, especially when a robot needs

to navigate in large scale environments.

To overcome the limitations of the grid-based planners,

some authors have developed path planning methods for out-

door robots based on Visibility Graphs [7][8]. These methods

usually plan a path through a map in which, the obstacles

have been transformed into polygons. Planning using these

methods in high-dimension spaces is not computationally

efficient and another drawback of these methods is that

sometimes we close off good paths when we polygonize the

environment.

Our heuristic for planning a path on the graph is mainly

based on Exploration Bias, which is an adaptive attribute

defined for each node in the planning graph. The idea for

introducing this term is to avoid certain regions of the

environment. For example, it is used to avoid the local

minima that we encounter in a cul-de-sac and to avoid the

obstacles in general. Furthermore, this factor can be used to

probabilistically plan a path when we have large uncertainty

in the location estimation of the robot. In the following

sections, we explain how a planning graph is built and how

we incorporate the Exploration Bias into the nodes of a

graph. Then we compare our method with a few existing

methods that have remarkable results to demonstrate that

there is no significant difference in the resulting path cost,

planning time and the traveling time of the robot.

II. SENSOR ESTIMATED GRAPH-BASED PLANNING

In this section, we describe how we build a graph based on

local perception of the robot and how we plan a path using

the planning graph. We begin this section by defining the

planing graph structure and the newly introduced variables

associated with the graph.

A. Definition of Graph Structure

As the basic graphs, our planning graph Gp = (V, E)
consists of a set of nodes and edges. Each node ν ∈ V

represents a geometric location in the environment so a

location parameter is associated with each node in the graph.

Throughout this paper, we use two dimensional location

estimates but it can be easily extended to higher dimensions.

Another attribute associated with a node is the Exploration

Bias. The Exploration Bias is considered as a cost for the

node and represents how good a node is to be chosen as

the next waypoint. We incorporate this cost in our planning

process, as discussed later in Section II-C.

We define an edge between two nodes whenever a node

is visible and traversable from the other node. The visi-

bility is determined based on local perception information.

The perception information also determines the cost of an

edge that is how traversable between two nodes is. Higher

traversability corresponds to a lower cost for an edge. An

example graph is shown in Figure 1.

In the following sections, we explain how the graph is

constructed with local perception information and then we

show how one of the nodes of the planning graph is chosen

as an intermediate (interim) goal at each planning cycle.

Fig. 2. An example of traversable rays from the robot overlaid on a cost
map has been shown. Some rays are fully extended and others are pre-
stopped due to collision with obstacles.

B. Graph Construction Procedure

For the graph construction, it is assumed that a robot does

not have any prior knowledge of the working environment

so the robot starts with a graph, which has a single node

and no edges, and we assume the robot always have some

knowledge about the location of the goal and the location of

itself in a global reference frame.

The procedure for constructing the graph is as follows:

• The robot receives local perception information. In this

paper, by local information we mean the observation of

the robot from its immediate surrounding. In general,

the perception information can be any useful informa-

tion for planning for example, the cost map, elevation

map or traversability map.

• In our case, we shoot out traversability rays in the

visible range on the cost map. The rays are in different

angles from the location of the robot. Figure 2 shows

some example rays on a cost map. An edge whose

one end is the robot location and the other end is the

maximum distance that the robot can observe, will be

added to the graph.

• To assign a cost to each edge, we sample each edge and

calculate the average of sample costs on the edge. The

cost of the edge will be determined by multiplying the

average cost value to the length of the edge.

• We assign Exploration Bias, EB, to a newly added node

ν as shown in Equation 1. We assign zero Exploration

Bias to a node unless the edge that connects the node

to the robot collides with an obstacle.

EB(ν) =

{

k if ν is close to obstacle

0 otherwise
(1)

The value for k can be chosen depending on how much

we want to get close to obstacles during a run. We

can avoid planning a path through dangerous nodes by

increasing k value. We also increase the Exploration

Bias for a node, whenever a robot visits that node. By

visiting a node we mean that the node is within a certain

distance from the robot. This means that a plan is very

unlikely to succeed when it contains many nodes with

large Exploration Bias.



Fig. 3. Some example cases of merging a new edge with the existing
edges.

• Finally, there is a chance that the new edges intersect

with some of the existing edges. Some examples are

shown in Figure 3. We merge the new edges with the

existing edges and we prune the graph by removing

the extra nodes and edges and we make the graph a

connected graph by adding nodes. When we merge two

nodes, the nodes will share the Exploration Bias and

when we add a new node, the new node will have zero

Exploration Bias.

Benefits of merging graphs are of significant impor-

tance. One benefit is the reduction of the computations

for planning. This is because merging usually reduces

the path length to a node in the graph, which is a dom-

inant factor determining the computational complexity

of planning. Another words, the quality of the shortest

path obtained from the constructed graph after finishing

a run will be improved. Without merging, the shortest

path in the worst case will be sum of distances the robot

moves over a run.

C. Planning on Graphs

At the beginning of a run, the robot starts with a graph

that consists a single node that represents the area of the

current location of the robot. Once new traversable edges

are added to the graph, one of the nodes in the graph has to

be chosen as a sub-goal, which we denote as interim goal.

The interim goal is more than just a waypoint because the

robot has to reach it before performing re-planning to find

a new interim goal or the goal. We put this constraint based

on our preliminary observation from our tests with a real

robot that too frequent re-planning often causes the robot to

oscillate between different but equally low cost areas and

prevents the robot from exploring areas thoroughly.

Selection of an interim goal is based on a heuristic

function described below. We form a set of nodes, denoted

by V̂ , in the graph that have the minimum Exploration Bias

and were not generated by collision with obstacles. If all

nodes in the graph would be considered as candidates for

an interim goal, the method became more computationally

expensive. Also, we do not observe any improvement in the

final results when we consider all of the nodes. Then, the

cost function c(ν) for each node ν ∈ V̂ is calculated as in

Equation 2. The node with the minimum cost will be chosen

Fig. 4. Examples of planned paths for two different maps are shown. Left:
a uniform synthetic cost map is shown as an example case of a cul-de-sac.
Right: a non-uniform cost map represents cluttered areas with high costs
and obstacles near the goal and the robot. The red line shows the final best
path from the source to the goal found after finishing a run.

from this set as the next interim goal.

c(ν) = eb(ν) × (α pA(ν) + β pB(ν)) (2)

where, pA(ν) is the cost of the path between the current

location of the robot to the node ν, pB(ν) represents the

cost from node ν to the goal. α and β are the normalization

parameters and we show the effect of these two parameters

in the experiments later.

We denote Exploration Bias of an area around node ν

by eb(ν). We calculate this quantity for a node based on a

normal weighted average of the neighbor nodes’ Exploration

Bias, where the distance of a node from its neighbors is

defined on the graph. The idea is that we assign a high cost

to a node which is located in an area with high Exploration

Bias and we try to avoid that region. eb(ν) is defined as

follows:

eb(ν) =

∑N
i=1
i6=ν

EBi × exp(− 1

2
‖d(ν, i)‖

2

Σ
)

∑N
i=1
i6=ν

exp(− 1

2
‖d(ν, i)‖

2

Σ
)

(3)

where, N is the number of neighbors of ν and ‖d(ν, i)‖
2

Σ
is

the Mahalanobis graph distance between node ν and node i.

EBi is also the Exploration Bias for node i.

The next part of the problem is to plan a path from

the current location of the robot to the candidate node. We

can choose any method that finds the shortest path between

two nodes in a graph. If the candidate nodes comprise a

large portion of the graph, the individual calculations for

each candidate node would be computationally expensive.

We use Dijkstra’s algorithm, which finds shortest path from

one source node to every other nodes in the graph. Since

the location of the robot is a common source node for each

search, the single execution of the Dijkstra’s algorithm keeps

a shortest path for every node in the graph and acts as a

lookup table.

The planned paths for two different maps are shown in

Figure 4. We have shown the full map in the figure but a

robot only visits and perceives approximately the contour of

the constructed graph.



Fig. 5. An example of a planning graph Gp(V, E) (left) and the
corresponding R-Tree (right). Each edge in the graph is tagged with a
Minimum Bounding Rectangle (MBR), which is the minimum size of a
rectangle containing an edge.

D. Computational Complexity of Graph Operations

Several graph-related operations are used for both con-

structing graphs and planning over graphs and they are

computationally expensive since they all require pairwise

comparison of existing nodes and/or edges with a newly

added node and/or edge. For instance, finding edges in a

graph that intersect with a new edge takes O(|E|).
As a robot traverses an environment and perceives more

local information, computations of graph-based operations

linearly increase. To make those computations almost con-

stant regardless of the number of edges and nodes in a

graph, we adopt a spatial tree-based data structure, the R-

Tree, which was proposed by Guttman [9] and has been

successfully used to search spatial objects stored in a spatial

database that are inside a window query.

The R-Tree, as shown in Figure 5 (right) is a tree data

structure, which splits the space with hierarchically struc-

tured minimum bounding rectangles (MBRs). A tree consists

of two different parts: 1) leaf nodes and 2) internal nodes.

Each leaf node contains a spatial object (an edge in this

paper) and the object’s MBR, two dimensional minimum size

of rectangle box bounding the object. Each internal node

defines a MBR bounding its children nodes (which could

be either/both leaf nodes or/and other internal nodes). We

cannot use data structures storing points such as KD-Tree

or Quadtree because those data structures do not support

searching for intersection between edges. In section III,

we show through experiments that using the R-Tree for

searching nodes and edges significantly reduces the overall

planning time. Below, we briefly describe how the R-Tree is

constructed and balanced while building a planning graph.

More details about R-Trees can be found in [9].

• Searching nodes in a graph within a certain distance

from a query point. To merge close nodes to simplify

the graph, it is required to find nodes close to the

query. A minimum bounding rectangle at which the

query location is centered is determined and the size of

the rectangle depends on the search radius. The search

starts from the root node of the tree. Each child node

belonging to the root is checked if the child node’s

bounding rectangle overlaps with the query’s. If so, then

that child node is also searched; otherwise, the node

(and children nodes of the node) are excluded from the

search. The search stops if all of the nodes in a tree are

either traversed or excluded. The search retrieves all

of edges whose bounding rectangles overlap with the

query’s. Final distance checking should be done with

all nodes of retrieved edges to acquire close nodes to

the query point.

• Searching edges intersecting with a query edge.

Once a minimum bounding rectangle containing the

query edge is determined, the same steps are taken

for retrieving edges whose bounding rectangle overlaps

with the query’s. The intersection checking should be

done with retrieved edges to acquire edges that intersect

with the query edge.

• Adding a new edge to the graph. When a new

edge is added to the graph, that edge as well as its

minimum bounding rectangle should be added to the

tree. Inexpensive search operations, taking O(log|V |),
described above are possible at the expense of additional

computations for insertion and deletion operation. First,

a minimum bounding rectangle containing the edge

should be determined. Then, the edge tagged with its

MBR is added to the tree by traversing from the root

node of the tree and recursively selecting a child node

of the traversing node, whose bounding rectangle needs

least enlargement to include the new edge until reaching

to a leaf node. Then, the edge is added to the selected

leaf node.

• Deleting an existing edge from a graph. When a new

edge intersects with existing edges in the graph, those

existing edges in the graph are deleted from and splitted

edges are added to the tree. To delete them from the tree,

minimum bounding rectangles containing those edges

are determined and we search for leaf nodes whose

bounding rectangles are the same as the deleted edges’

and remove those leaf nodes from the tree.

III. EXPERIMENTS

We performed experiments in simulation using three sam-

ple cost maps: one map created from real outdoor runs

of a mobile robot platform and the other two maps cre-

ated manually to test some difficult situations. The robot-

generated cost map, as shown in Figure 6 (right), represents

an area containing various obstacles including trees, walls,

and barrels and also open terrain. The cost map is obtained

from the information from two pairs of stereo cameras and

the bumpers of the robot. We call this cost map the cluttered

cost map. The first manually generated cost map, as shown

in Figure 4 (left) is a binary map where the the goal is on the

outside of rectangular obstacles and the only way to reach

to the goal is to get out of the room via an open area located

at the bottom of the map. It is denoted by room cost map.

The second manually generated cost map shown in Figure

6 (left) is denoted by cul-de-sac cost map. Each cost map

represents a grid of 400m× 400m and the terrain observed

in cluttered cost map is approximately 100m× 100m.



Fig. 6. (Left) cul-de-sac, a synthetic cost map which is a uniform cost
map having three small cul-de-sacs at the bottom and a large one at the top.
(Right) cluttered, a robot-built cost map which includes various types of low
cost and high cost obstacles. The large black dot represents the location of
the goal and the small blue dots correspond to start locations of different
trials.
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Fig. 7. The cost of the resulted shortest path per each trial on synthetic
cul-de-sac cost map. The shortest path is found after the planning is finished.
The green line shows a set of runs with using graph merging, and the purple
line shows a set of runs without graph merging.

A. Experimental Setup

Experiments were conducted in two different ways: 1)
parameter experiments: the experiments with different set-

tings for the parameters of our approach, and 2) method

experiments: comparing our approach against two random-

ized sampling based methods, a variant of RRT [10] that

basically samples from a set of configurations from previous

solutions for fast and consistent convergence to a path to the

goal, and another variant of RRT [11] that uses a cost-based

distance function to incorporate cost information of terrains

into planning process and dynamically adjusts the distance

function to find the near optimal solution.

B. Parameter Experimental Results

In the first experiment, we tested the effectiveness of graph

merging on the cost of the best path (the red paths shown in

Figure 4) found after the planning is done in cul-de-sac cost

map. As shown in Figure 7, graph merging reduces the path

cost. Each trial in the figure corresponds to different starting

location of the robot. It is obvious that without merging edges

and nodes that cover spatially same areas, the resulting path

is the same as the path that the robot traverses over a run.

The path cost does not have a specific unit. We assign a value

to each pixel of the map based on what we observe from the
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Fig. 8. Performance graph for planning time per each trial in cul-de-sac

cost map. The green line indicates a set of runs with using the R-Tree, and
the purple crosses correspond to the same starting locations but without
using R-Tree.

Fig. 9. Performance graph for exploration time ratio for different values of
parameters alpha and beta in the synthetic room map. Different settings of
alpha with beta fixed at 150 are tested. Vertical bars indicate the variance
of the exploration time ratio.

robot. For instance, tall grass has higher cost compared to

short grass.

The second experiment involves the estimation of the

computational complexity of graph-related operations (i.e.

insertion, deletion, and search). It is shown in Figure 8 that

using R-Tree for operations on planning graphs significantly

reduces the computation and thus the overall planning time.

In the last experiment, shown in Figure 9, we consider

exploration time ratio as a function of alpha and beta (refer

to Eq. 2) used for calculating an interim goal on the room

cost map. Exploration time ratio is an average of running

time ratio (ratio of the spent time to the minimum spent

time). As the alpha value becomes close to 0, the exploration

time ratio almost goes up to 6. This is because smaller values

of alpha put more weight on pB in Equation 2 and the

location of new interim goal less depends on the location

of the previous interim goal. Usually, as α becomes smaller,

the robot spends less time for exploration of the immediate

surrounding and it tries to reach the goal faster. However,

in this experiment, the robot has been surrounded by a large

obstacle, which forces the robot to explore farther areas as

well. It should be mentioned that the robot starting location

is different in each trial.
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Fig. 10. Path cost for runs with different starting locations for cluttered

cost map. The trials are sorted for each method separately.

1 2 3 4 5 6 7 8 9 10
0

100

200

300

400

500

600

700

Trials

T
ra

v
e
rs

e
d
 D

is
ta

n
c
e
 (

m
)

Traversed Distance Comparison

 

 

RRT

MA−RRT

SEG

Fig. 11. Travel distance for runs with different starting locations for
cluttered cost map. The trials are sorted for each method separately.

C. Comparison with Other Planning Methods

We compared our approach (Sensor Estimated Graph

planner) with the basic RRT [10] and MA-RRT [11] to

determine the relationship between the final path cost and the

distance traveled by the robot using each method. We define

the final path cost to be the cost of the path calculated on

each model (grid maps for RRT and MA-RRT, and graphs

for our approach) after finishing a run.

As shown in Figure 10, the cost of the paths found by SEG

method is better than those from RRT but they are slightly

worse than the solutions of MA-RRT. The MA-RRT method,

as shown in Figure 11, spends more time on exploring the

robot surrounding to find a better path compared to the other

two methods.

Throughout this experiment, we demonstrate that the SEG

algorithm is capable of finding a high quality path solution

by traversing reasonable amount of areas.

IV. CONCLUSION AND FUTURE WORK

We presented a graph-based path planning method which

uses only local perception of the currently visible area around

the robot to plan a path from a source location to a goal.

We used this path planning method to explore unknown

areas and find a low cost path to the goal. Apparently, the

sparsity of the graph in contrast to the grid cells, improved

the memory requirements of the existing planners while we

show that resulting path cost and the traveled distance of the

robot is not significantly different from those of the previous

approaches.

We introduced Exploration Bias as a node parameter

that determines how much the surrounding area of a node

has been visited and how likely it is that the node be a

candidate node for the next waypoint. One of the advantages

of Exploration Bias is that a node implicitly encodes the

neighbor obstacles and we do not need to save the obstacles

in memory.

The low memory requirement is one of the main advan-

tages of our method. In outdoor experiments, where the robot

operates in large environments a sparse representation is

required as even with the current memory technologies, the

robot encounters memory problems in such large environ-

ments. Addition of other dimensions to a map representation

such as height or path type may even increase the need for

a sparse representation.

In some applications, we require that the robot repeats

the same task in an environment. If we save the path and

use the nodes and edges that formed the best path, we

do not need to plan a path again. There are usually some

uncertainties in the outdoor robot location estimates obtained

using GPS. The graph representation is more robust against

these uncertainties if we can go from a node to a neighbor

node with a single control law since the location of these

nodes will not be important any more and noise in location

estimate will not have a drastic effect on path planning.

Although this method works in both indoor and outdoor

environments it is more suitable for outdoor settings since the

path cost is uniform in the indoors and also outdoor terrains

have more open areas.
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