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Abstract

3D object detection and pose estimation methods have
become popular in recent years since they can handle am-
biguities in 2D images and also provide a richer descrip-
tion for objects compared to 2D object detectors. How-
ever, most of the datasets for 3D recognition are limited to
a small amount of images per category or are captured in
controlled environments. In this paper, we contribute PAS-
CAL3D+ dataset, which is a novel and challenging dataset
for 3D object detection and pose estimation. PASCAL3D+
augments 12 rigid categories of the PASCAL VOC 2012 [4]
with 3D annotations. Furthermore, more images are added
for each category from ImageNet [3]. PASCAL3D+ images
exhibit much more variability compared to the existing 3D
datasets, and on average there are more than 3,000 object
instances per category. We believe this dataset will provide
a rich testbed to study 3D detection and pose estimation
and will help to significantly push forward research in this
area. We provide the results of variations of DPM [6] on
our new dataset for object detection and viewpoint estima-
tion in different scenarios, which can be used as baselines
for the community. Our benchmark is available online at
http://cvgl.stanford.edu/projects/pascal3d

1. Introduction
In the past decade, several datasets have been intro-

duced for classification, detection and segmentation. These
datasets provide different levels of annotation for images
ranging from object category labels [5, 3] to object bound-
ing box [7, 4, 3] to pixel-level annotations [23, 4, 28]. Al-
though these datasets have had a significant impact on ad-
vancing image understanding methods, they have some ma-
jor limitations. In many applications, a bounding box or
segmentation is not enough to describe an object, and we
require a richer description for objects in terms of their 3D
pose. Since these datasets only provide 2D annotations,
they are not suitable for training or evaluating methods that
reason about 3D pose of objects, occlusion or depth.

To overcome the limitations of the 2D datasets, 3D

Figure 1. Example of annotations in our dataset. The annotators
select a 3D CAD model from a pool of models and align it to the
object in the image. Based on the 3D geometry of the model and
the annotated 2D locations of a set of landmarks, we automatically
compute the azimuth, elevation and distance of the camera (shown
in blue) with respect to the object. Images are uncalibrated, so the
camera can be at any arbitrary location.

datasets have been introduced [22, 20, 25, 8, 19]. However,
the current 3D datasets have a number of drawbacks as well.
One drawback is that the background clutter is often lim-
ited and therefore methods trained on these datasets cannot
generalize well to real-world scenarios, where the variabil-
ity in the background is large. Another drawback is that
some of these datasets do not include occluded or truncated
objects, which again limits the generalization power of the
relevant learnt models. Moreover, the existing datasets typ-
ically only provide 3D annotation for a few object classes
and the number of images or object instances per category is
usually small, which prevents the recognition systems from
learning robust models for handling intra-class variations.
Finally and most critically, most of these datasets supply
annotations for a small number of viewpoints. So they are
not suitable for object detection methods aiming at estimat-
ing continuous 3D pose, which is a key component in var-
ious scene understanding or robotics applications. In sum-
mary, it is necessary and important to have a challenging 3D
benchmark which overcomes the above limitations.

1



PASCAL3D+ (ours) ETH-80 [13] [26] 3DObject [22] EPFL Car [20] [27] KITTI [8] NYU Depth [24] NYC3DCars [19] IKEA [15]

# of Categories 12 8 2 10 1 4 2 894 1 11
Avg. # Instances per Category ∼3000 10 ∼140 10 20 ∼660 80,000 39 3,787 ∼73
Indoor(I) / Outdoor(O) Both I Both Both I Both O I O I
Cluttered Background 3 7 3 7 7 3 3 3 3 3
Non-centered Objects 3 7 3 7 7 7 3 3 3 3
Occlusion Label 3 7 7 7 7 7 3 3 3 7
Orientation Label 3 3 3 3 3 3 3 7 3 3
Dense Viewpoint 3 7 7 7 7 3 3 7 3 3

Table 1. Comparison of our PASCAL3D+ dataset with some of the other 3D datasets.

Our contribution in this work is a new dataset, PAS-
CAL3D+. Our goal is to overcome the shortcomings of the
existing datasets and provide a challenging benchmark for
3D object detection and pose estimation. In PASCAL3D+,
we augment the 12 rigid categories in the PASCAL VOC
2012 dataset [4] with 3D annotations. Specifically, for each
category, we first download a set of CAD models from
Google 3D Warehouse [1], which are selected in such a
way that they cover the intra-class variability. Then each
object instance in the category is associated with the closest
CAD model in term of 3D geometry. Besides, several land-
marks of these CAD models are identified in 3D, and the
2D locations of the landmarks are labeled by annotators. Fi-
nally, using the 3D-2D correspondences of the landmarks,
we compute an accurate continuous 3D pose for each object
in the dataset. As a result, the annotation of each object con-
sists of the associated CAD model, 2D landmarks and 3D
continuous pose. In order to make our dataset large scale,
we add more images from ImageNet [3] for each category.
In total, more than 20,000 additional images with 3D an-
notations are included. Figure 1 shows some examples in
our dataset. We also provide baseline results for object de-
tection and pose estimation on our new dataset. The results
show that there is still a large room for improvement, and
this dataset can serve as a challenging benchmark for future
visual recognition systems.

There are several advantages of our dataset: i) PAS-
CAL images exhibit a great amount of variability and bet-
ter mimic the real-world scenarios. Therefore, our dataset
is less biased compared to datasets which are collected in
controlled settings (e.g., [22, 20]). ii) Our dataset includes
dense and continuous viewpoint annotations. The existing
3D datasets typically discretize the viewpoint into multi-
ple bins (e.g., [13, 22]). iii) On average, there are more
than 3,000 object instances per category. Hence, detectors
trained on our dataset can have more generalization power.
iv) Our dataset contains occluded and truncated objects,
which are usually ignored in the current 3D datasets. v)
Finally, PASCAL is the main benchmark for 2D object de-
tection. We hope our efforts on providing 3D annotations to
PASCAL can benchmark 2D and 3D object detection meth-
ods with a common dataset.

The next section describes the related work and other 3D
datasets in the literature. Section 3 provides dataset statis-

tics such as viewpoint distribution and variations in degree
of occlusion . Section 4 describes the annotation tool and
the challenges for annotating 3D information in an uncon-
strained setting. Section 5 explains the details of our base-
line experiments, and Section 6 concludes the paper.

2. Related Work

We review a number of commonly used datasets for 3D
object detection and pose estimation. ETH-80 dataset [13]
provides a multi-view dataset of 8 categories (e.g., fruits
and animals), where each category contains 10 objects ob-
served from 41 views, spaced equally over the viewing
hemisphere. The background is almost constant for all of
the images, and the objects are centered in the image. [26]
introduces another multi-view dataset that includes motor-
bike and sport shoe categories in more challenging real-
world scenarios. There are 179 images and 101 images
corresponding to each category respectively. On average
a motorbike is imaged from 11 views. For shoes, there are
about 16 views around each instance taken at 2 different ele-
vations. 3DObject dataset [22] provides 3D annotations for
10 everyday object classes such as car, iron, and stapler.
Each category includes 10 instances observed from differ-
ent viewpoints. EPFL Car dataset [20] consists of 2,299
images of 20 car instances at multiple azimuth angles. The
elevation and distance is almost the same for all of these in-
stances. Table-Top-Pose dataset [25] contains 480 images
of 3 categories (mouse, mug, and stapler), where each con-
sists of 10 instances under 16 different poses.

These datasets exhibit some major limitations. Firstly,
most of them have more or less clean background. There-
fore, methods trained on them will not be able to han-
dle cluttered background, which is common in real-world
scenarios. Secondly, these datasets only include a limited
number of instances, which makes it difficult for recogni-
tion methods to learn intra-class variations. To overcome
these issues, more challenging datasets have been proposed.
ICARO [16] contains viewpoint annotations for 26 object
categories. However, the viewpoints are sparse and not
densely annotated. [27] provides 3D pose annotations for
a subset of 4 categories of the ImageNet dataset [3]: bed
(400 images), chair (770 images), sofa (800 images) and
table (670 images). Since the ImageNet dataset is mainly



designed for the classification task, the objects in the dataset
are usually not occluded and they are roughly centered. The
KITTI dataset [8] provides 3D labeling for two categories
(car and pedestrian), where there are 80K instances per
category. The images of this dataset are limited to street
scenes, and all of the images have been obtained by cam-
eras mounted on top of a car. This may pose some issues
concerning the ability to generalize to other scene types.
More recently, NYC3DCars dataset [19] has been intro-
duced, which contains information such as 3D vehicle an-
notations, road segmentation and direction of movement.
Although the imagery is unconstrained for this dataset in
terms of camera type or location, the images are constrained
to street scenes of New York. Also, the dataset contains only
one category. [15] provides dense 3D annotations for some
of the IKEA objects. Their dataset is also limited to indoor
images and the number of instances per category is small.

Simultaneous use of 2D information and 3D depth makes
the recognition systems more powerful. Therefore, various
datasets have been collected by RGB-D sensors (such as
Kinect). RGB-D Object Dataset [12] contains 300 physi-
cally distinct objects organized into 51 categories. The im-
ages are captured in a controlled setting and have a clean
background. Berkeley 3-D Object Dataset [11] provides
annotation for 849 images of over 50 classes in real office
environments. NYU Depth [24] includes 1,449 densely la-
beled pairs of aligned RGB and depth images. The dataset
includes 35,064 distinct instances, which are divided into
894 classes. SUN3D [29] is another dataset of this type,
which provides annotations for scenes and objects. There
are three limitations for these types of datasets that make
them undesirable for 3D object pose estimation: i) They
are limited to indoor scenes as the current common RGB-D
sensors have a limited range. ii) They do not provide the ori-
entation for objects (they just provide the depth). iii) Their
average number of images per category is small.

Our goal for providing a novel dataset is to eliminate the
mentioned shortcomings of other datasets, and enhance 3D
object detection and pose estimation methods by training
and evaluating them on a challenging and real world bench-
mark. Table 1 shows a comparison between our dataset and
some of the most relevant datasets mentioned above.

3. Dataset Details and Statistics
We describe the details of our PASCAL3D+ dataset and

provide some statistics. We annotated the 3D pose densely
for all of the object instances in the trainval subset of
PASCAL VOC 2012 detection challenge images (including
instances labeled as ‘difficult’). We consider the 12 rigid
categories of PASCAL VOC, since estimating the pose of
the deformable categories is still an open problem. These
categories are aeroplane, bicycle, boat, bottle, bus, car,
chair, diningtable, motorbike, sofa, train and tvmonitor. In
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Figure 3. Elevation distribution. The distribution of elevation
among the PASCAL images across all the categories.

total, there are 13,898 object instances that appear in 8,505
PASCAL images. Furthermore, we downloaded 22,394 im-
ages from ImageNet [3] for the 12 categories. For the Ima-
geNet images, the objects are usually centered without oc-
clusion and truncation. On average, there are more than
3,000 instances per category in our PASCAL3D+ dataset.

The annotation of an object contains the azimuth, ele-
vation and distance of the camera pose in 3D (we explain
how the annotation is obtained in the next section). More-
over, we assign a visibility state to landmarks that we iden-
tify for each category: 1) visible: the landmark is visible
in the image. 2) self-occluded: the landmark is not visi-
ble due to the 3D geometry and the pose of the object. 3)
occluded-by: the landmark is occluded by an external ob-
ject. 4) truncated: the landmark appears outside the image
area. 5) unknown: none of the above four states. To ensure
high quality labeling, we hired annotators for the annotation
instead of posting the task on crowd-sourcing platforms.

Figure 2 shows the distribution of azimuth among the
PASCAL images for the 12 categories, where azimuth 0◦

corresponds to the frontal view of the object. As expected,
the distribution of viewpoints is biased. For example, very
few images are taken from the back view (azimuth 180◦)
of sofa since the back of sofa is usually against a wall. For
tvmonitor, there is also a high bias towards the frontal view.
Since bottles are usually symmetric, the distribution is dom-
inated by azimuth angles around zero. The distribution of
elevation among the PASCAL images across all categories
is shown in Figure 3. It is evident that there is large vari-
ability in the elevation as well. These statistics show that
our dataset has a fairly good distribution in pose variation.

We also analyze the object instances based on their de-
gree of occlusion. The statistics in Figure 4 show that PAS-
CAL3D+ is quite challenging as it includes object instances
with different degrees of occlusion. The main goal of most
previous 3D datasets was to provide a benchmark for ob-
ject pose estimation. So they usually ignored occluded or
truncated objects. However, handling occlusion and trunca-
tion is important for real world applications. Therefore, a
challenging dataset like ours can be useful. In Figure 4, we
divide the object instances into three classes based on the
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Figure 2. Azimuth distribution. Polar histograms show the distribution of azimuth among the PASCAL images for each object category.
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Figure 4. Occlusion distribution. The distribution of object instances based on the degree of occlusion in the PASCAL images.

ratio of their externally occluded or truncated landmarks to
all landmarks (0 to 1/3, 1/3 to 2/3 and above 2/3). The in-
stances of some categories such as chair or diningtable are
highly occluded, which poses a big challenge to the existing
object detection and pose estimation methods.

4. 3D Annotation

Providing 3D annotations for unconstrained images is
not trivial since only a single image of a scene is available
and the camera parameters are unknown. In this section, we
explain the details of our annotation tool and the procedure
for 3D annotation labeling.

For each category, we downloaded 3D CAD models
from Google 3D Warehouse [1], which is a public repos-
itory for 3D CAD models. We select the CAD models in
such a way that they represent intra-class variations of a par-
ticular category. For example, we select SUV, sedan, hatch-
back, etc., for the car category. For the aeroplane category,
we choose airliner, fighter, propeller, and so on. The 3D
CAD models for two example categories are shown in Fig-
ure 5. For a sub-category (e.g., propeller aeroplane), more
than one CAD model can be selected to better capture the

Figure 6. A snapshot of our annotation tool. The blue mesh is
the 3D CAD model chosen by the annotator, and the red circle
corresponds to one of the landmarks.

variations in the sub-category.
For each CAD model, we identify a set of landmarks,



(a) Aeroplane

(b) Sofa

Figure 5. Examples of 3D CAD models used for annotation. To better capture intra-class variability of object categories, different types of
CAD models are chosen. The red points represent the identified landmarks.

which are shown with red circles in Figure 5. The land-
marks are chosen such that they are shared among instances
in a category and can be identified easily in the images.
Most of the landmarks correspond to the corners in the
CAD models. The task of annotators is to select the closest
CAD model for an object instance in terms of 3D geome-
try and label the landmarks of the CAD model on the 2D
image. Then we use these 2D annotations of the landmarks
and their corresponding locations on the 3D CAD models
to find the azimuth, elevation and distance of the camera
pose in 3D for each object instance. A visualization of our
annotation tool is shown in Figure 6. The annotator first
selects the 3D CAD model that best resembles the object
instance. Then, he/she rotates the 3D CAD model until it
is aligned with the object instance visually. The alignment
provides us with rough azimuth and elevation angles, which
are used as initialization in computing the continuous pose.
Based on the 3D geometry and the rough pose of the CAD
model (after alignment), we compute the visibility of the
landmarks. After this step, we show the visible (not self-
occluded) landmarks on the 3D CAD model one by one and
ask the annotator to mark their corresponding 2D location in
the image. For occluded or truncated landmarks, the anno-
tator provides its visibility status as explained in Section 3.

As the result of the annotation, for each object instance
in the dataset, we obtain the correspondences between 3D
landmarks X on the CAD model and their 2D projection
x on the image. By using a pinhole camera model, the
relationship between the 2D and 3D points is given by:
xi = K[R|t]Xi, where K is the intrinsic camera matrix,
and R and t are the rotation matrix and the translation vec-
tor respectively. We use a virtual intrinsic camera matrix
K, where the focal length is assumed to be 1, the skew is
0 and the aspect ratio is 1. We assume a simplified cam-
era model, where the world coordinate is defined on the 3D
CAD model and the camera is facing the origin of the world
coordinate system. In this case, R and t are determined by
the azimuth, elevation and distance of the camera pose in
3D. So we can minimize the re-projection error of the 3D

landmarks to obtain the continuous pose of the object:

min
R,t

L∑
i=1

||xi − x̃i||2, (1)

where L is the number of visible landmarks and x̃i is the an-
notated landmark location in the image. By solving the min-
imization problem (1), we can find the rotation matrix R and
the translation vector t, which provide the azimuth, eleva-
tion and distance of the object pose. This is the well-studied
Perspective-n-Points (PnP) problem for which various solu-
tions (e.g., [18, 2, 14]) exist. We use the constrained non-
linear optimization implementation of MATLAB to solve
(1). For degenerate cases, where there are not enough land-
marks visible to compute the pose (less than 2 landmarks),
we use the rough azimuth and elevation specified by the an-
notator instead.

5. Baseline Experiments
In this section, we provide baseline results in terms of

object detection, viewpoint estimation and segmentation.
We also show that how well the baseline method can han-
dle different degrees of occlusion. For all the experiments
below, we use the train subset of PASCAL VOC 2012
(detection challenge) for training and the val subset for
evaluation. We adapt DPM [6] (voc-release4.01) to
joint object detection and viewpoint estimation.

5.1. Detection and Viewpoint Estimation

The original DPM method uses different mixture compo-
nents to capture pose and appearance variations of objects.
The object instances are assigned to these mixture compo-
nents based on their aspect ratios. Since the aspect ratio
does not necessarily correspond to the viewpoint, viewpoint
estimation with the original DPM is impractical. Therefore,
we modify DPM similar to [17] such that each mixture com-
ponent represents a different azimuth section. We refer to
this modified version as Viewpoint-DPM (VDPM). In the



aeroplane bicycle boat bottle bus car chair diningtable motorbike sofa train tvmonitor Avg.
DPM [6] 42.2 / – 49.6 / – 6.0 / – 20.0 / – 54.1 / – 38.3 / – 15.0 / – 9.0 / – 33.1 / – 18.9 / – 36.4 / – 33.2 / – 29.6 / –

VDPM - 4V 40.0 / 34.6 45.2 / 41.7 3.0 / 1.5 – / – 49.3 / 26.1 37.2 / 20.2 11.1 / 6.8 7.2 / 3.1 33.0 / 30.4 6.8 / 5.1 26.4 / 10.7 35.9 / 34.7 26.8 / 19.5
VDPM - 8V 39.8 / 23.4 47.3 / 36.5 5.8 / 1.0 – / – 50.2 / 35.5 37.3 / 23.5 11.4 / 5.8 10.2 / 3.6 36.6 / 25.1 16.0 / 12.5 28.7 / 10.9 36.3 / 27.4 29.9 / 18.7
VDPM - 16V 43.6 / 15.4 46.5 / 18.4 6.2 / 0.5 – / – 54.6 / 46.9 36.6 / 18.1 12.8 / 6.0 7.6 / 2.2 38.5 / 16.1 16.2 / 10.0 31.5 / 22.1 35.6 / 16.3 30.0 / 15.6
VDPM - 24V 42.2 / 8.0 44.4 / 14.3 6.0 / 0.3 – / – 53.7 / 39.2 36.3 / 13.7 12.6 / 4.4 11.1 / 3.6 35.5 / 10.1 17.0 / 8.2 32.6 / 20.0 33.6 / 11.2 29.5 / 12.1

DPM-VOC+VP [21] - 4V 41.5 / 37.4 46.9 / 43.9 0.5 / 0.3 – / – 51.5 / 48.6 45.6 / 36.9 8.7 / 6.1 5.7 / 2.1 34.3 / 31.8 13.3 / 11.8 16.4 / 11.1 32.4 / 32.2 27.0 / 23.8
DPM-VOC+VP [21] - 8V 40.5 / 28.6 48.1 / 40.3 0.5 / 0.2 – / – 51.9 / 38.0 47.6 / 36.6 11.3 / 9.4 5.3 / 2.6 38.3 / 32.0 13.5 / 11.0 21.3 / 9.8 33.1 / 28.6 28.3 / 21.5
DPM-VOC+VP [21] - 16V 38.0 / 15.9 45.6 / 22.9 0.7 / 0.3 – / – 55.3 / 49.0 46.0 / 29.6 10.2 / 6.1 6.2 / 2.3 38.1 / 16.7 11.8 / 7.1 28.5 / 20.2 30.7 / 19.9 28.3 / 17.3
DPM-VOC+VP [21] - 24V 36.0 / 9.7 45.9 / 16.7 5.3 / 2.2 – / – 53.9 / 42.1 42.1 / 24.6 8.0 / 4.2 5.4 / 2.1 34.8 / 10.5 11.0 / 4.1 28.2 / 20.7 27.3 / 12.9 27.1 / 13.6

Table 2. The results of DPM, VDPM and DPM-VOC+VP are shown. The first number indicates the Average Precision (AP) for detection
and the second number shows the Average Viewpoint Precision (AVP) for joint object detection and pose estimation.

original DPM, half of the mixture components are mirrored
versions of the other half. So the training images are mir-
rored and assigned to the mirror mixture components. Sim-
ilarly, we mirror the training images and assign them to the
mirrored viewpoint components in VDPM. Another way to
perform joint object detection and pose estimation is to treat
it as a structure labeling problem. In Pepik et al. [21], they
utilize structural SVM to predict the object bounding box
and pose jointly, where the model is called DPM-VOC+VP.
In our baseline experiments, we divide the azimuth angles
into 4, 8, 16 and 24 sections and train VDPM and DPM-
VOC+VP models for each case.

To evaluate object detection, we use Average Precision
(AP) as the metric and use the standard 50% overlap cri-
teria of PASCAL VOC [4]. For viewpoint estimation, the
commonly used metric is the average over the diagonal of
the viewpoint confusion matrix [22]. However, this metric
only considers the viewpoint accuracy among the correctly
detected objects, which makes it non-comparable for two
detectors with different sets of detected objects. Since view-
point estimation is closely related to detection, we need a
metric for joint detection and pose estimation. We propose a
novel metric called Average Viewpoint Precision (AVP) for
this propose similar to AP in object detection. In computing
AVP, an output from the detector is considered to be correct
if and only if the bounding box overlap is larger than 50%
AND the viewpoint is correct (i.e., the two viewpoint labels
are the same in discrete viewpoint space or the distance be-
tween the two viewpoints is smaller than some threshold in
continuous viewpoint space). Then we can draw a View-
point Precision-Recall (VPR) curve similar to the PR curve.
Average viewpoint precision is defined as the area under the
VPR curve. Therefore, AVP is the metric for joint detection
and pose estimation. Note that detection PR curve is always
an upper bound of the VPR curve. Small gap between AVP
and AP indicates high viewpoint accuracy among the cor-
rectly detected objects.

The results of the original DPM with 6 mixture com-
ponents, VDPM and DPM-VOC+VP [21] for different az-
imuth sections are shown in Table 2. Since the instances of
the bottle category are often symmetric across different az-
imuth angles, it is ignored in VDPM and DPM-VOC+VP.

0–1/3 1/3–2/3 2/3–max
aeroplane 57.2 11.5 16.2

bicycle 70.6 30.4 8.7
boat 13.1 0.7 0.9
bus 77.4 35.7 4.1
car 55.3 12.3 3.4

chair 22.0 7.5 0.9
diningtable 33.3 19.9 7.8
motorbike 56.5 12.6 0.1

sofa 35.3 34.2 15.8
train 50.2 35.2 15.3

tvmonitor 58.0 8.1 2.2
Avg. 48.1 18.9 6.8

Table 3. The Normalized Average Precisions from VDPM with 8
views for object detection at different degrees of occlusion.

The detection performance of VDPM is on par with DPM.
Compared with VDPM, DPM-VOC+VP achieves better
viewpoint estimation in a tradeoff of slightly lower detec-
tion performance. For most categories, as we increase the
number of viewpoints, the viewpoint estimation task be-
comes harder and the AVP reduces, which is not surpris-
ing. We can see from Table 2 that there is still a large room
for improvement both in detection and pose estimation on
our dataset. Hence, our 3D annotations can be valuable for
developing new 3D object detection methods.

5.2. Sensitivity of Detection to Occlusion

Since our dataset provides occlusion labels for land-
marks, we can analyze the performance of detection at dif-
ferent degrees of occlusion. The occlusion of landmarks
does not directly determine the degree of occlusion of the
object, but it has a strong correlation with it. For exam-
ple, all landmarks can be occluded while most of the ob-
ject can be observed, but such a case does not happen in
reality. Therefore, we use the ratio of externally occluded
or truncated landmarks to all landmarks as a measure for
the degree of occlusion. We refer to it as the “occlusion
ratio”. In this experiment, we analyze the detection perfor-
mance of VDPM with 8 views in terms of different degree
of occlusion. We partition the instances into three occlusion
sets, i.e., the set with occlusion ratio between 0 and 1/3, the
set with occlusion ratio between 1/3 and 2/3, and the set
with occlusion ratio larger than 2/3. Since the number of
instances in each occlusion set is different, we report Nor-
malized Average Precision in Table 3 as suggested by [10].



aeroplane bicycle boat bottle bus car chair diningtable motorbike sofa train tvmonitor Avg.
GT CAD 43.8 28.7 43.0 66.0 78.4 67.3 41.8 28.0 60.0 40.3 59.2 72.3 52.4
Random CAD 32.8± 0.3 29.2± 0.5 28.7± 1.1 62.5± 1.0 67.2± 0.8 61.8± 0.5 35.8± 0.8 21.3± 0.6 54.6± 0.3 34.7± 0.5 53.8± 0.6 60.5± 2.8 45.2

VDPM - 4 views 22.6 16.1 23.4 – 50.7 51.2 25.7 12.4 34.4 27.3 35.1 56.6 32.3
VDPM - 8 views 24.1 16.6 23.5 – 52.7 51.2 27.6 10.8 35.7 29.4 40.2 55.0 33.3
VDPM - 16 views 24.7 16.6 23.5 – 57.8 51.9 26.5 10.1 37.9 29.5 40.2 55.9 34.1
VDPM - 24 views 24.5 16.9 20.5 – 57.1 50.9 27.2 11.5 37.3 27.6 39.8 54.7 33.5

Table 4. Segmentation accuracy obtained by projecting the 3D CAD models onto the images. Please refer to the text for more details.

It is evident that the detectors have difficulty in handling
highly occluded objects. In order to achieve good perfor-
mance in detection and pose estimation on our dataset, it is
important to handle the occluded and truncated objects. Our
dataset enables evaluation of occlusion reasoning as well.

5.3. Segmentation using 3D Pose

We show that estimating the viewpoint with the corre-
sponding CAD model for an object enables object segmen-
tation. To find the upper bound for segmentation in this
way, we project the ground truth CAD model (the one that
the annotator selected for the object instance) onto the im-
age using the ground truth azimuth, elevation and distance.
To evaluate the segmentation, we use the annotations pro-
vided by [9]. The first row of Table 4 shows the segmen-
tation accuracy using the ground truth poses, where we use
the standard PASCAL evaluation metric for segmentation.
The accuracy is not 100% due to several reasons. First, we
do not consider occlusion reasoning in the projection, and
the ground truth mask from [9] is just for the visible part of
the object. Second, due to the simplified camera model in
computing the continuous pose and the limited number of
CAD models in our dataset, the projection matrix we use is
an approximation to the real one. So we also include the
re-projection error in our 3D annotation, which can be con-
sidered to be a measure for the quality of the annotation.
Figure 7 shows segmentation examples for each category in
our dataset using the ground truth pose. As an example of
the re-projection error, the predicted legs of the diningtable
are not precisely aligned with the object in the image, which
results in a large penalty in the computing the segmentation
accuracy. For the chairs, a large penalty is introduced due
to occlusion. Occlusion reasoning is also important for seg-
mentation.

To show the importance of using the right CAD model
for annotation, instead of projecting the ground truth CAD
model, we project a randomly chosen model (from the set
of CAD models for a particular category) and evaluate the
segmentation performance. As shown in the second row
of Table 4, the average accuracy drops by about 7%. The
shown accuracy is the average over 5 different random se-
lections. Note that the performance for bicycle with random
models is higher than the case with the ground truth models.
This is due to the inaccuracy in 2D segmentation annotation
of bicycle. In most cases, the areas that correspond to the
background are labeled as bicycle (e.g., around the spokes).

We also evaluate how well the automatic approaches can
perform segmentation. In this experiment, we infer the az-
imuth automatically from VDPMs, but use the ground truth
elevation, distance and CAD model in the projection. More
specifically, for each detected object, we project the CAD
model to the image. We consider an object as detected
if there is a bounding box with more than 50% intersec-
tion over union overlap associated with it. The performance
drops significantly for the automatic approach. Note that the
segmentation performance becomes better as we use finer
discretization of azimuth (with the exception of 24 view-
points). The low performance with 24 views might be due
to the low performance of VDPM in viewpoint estimation
for 24 views as shown in Table 2.

6. Conclusion
To further improve the development of 3D object detec-

tion and pose estimation methods, we provide a large scale
benchmark PASCAL3D+ with 3D annotations of objects.
PASCAL3D+ overcomes the limitations of the existing 3D
datasets and better matches real-world scenarios. We devel-
oped an algorithm and annotation tool to provide the con-
tinuous 3D viewpoint annotations in unconstrained settings,
where the camera parameters are unknown and only a sin-
gle image of object instances is available. We also provide
baseline results for object detection, viewpoint estimation
and segmentation on our PASCAL3D+ dataset. The results
illustrate that there is still a large room for improvement in
all these tasks. We hope our dataset can push forward the
research in 3D object detection and pose estimation.
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